Skip to main content
Log in

Tricuspid Valve Annular Mechanics: Interactions with and Implications for Transcatheter Devices

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

In the interventional treatment of tricuspid valve regurgitation, the majority of prosthetic devices interact with or are implanted to the tricuspid valve annulus. For new transcatheter technologies, there exists a growing body of clinical experience, literature, and professional discourse related to the difficulties in delivering, securing, and sustaining the function of these devices within the dynamic tricuspid annulus. Many of the difficulties arise from circumstances not encountered in open-heart surgery, namely; a non-arrested heart, indirect visualization, and a reliance on non-suture-based methods. These challenges require the application of procedural techniques or system designs to account for tricuspid annular motion, forces, and underlying tissue strength. Improved knowledge in these interactions will support the goals of improving device systems, their procedures, and patient outcomes. This review aims to describe current concepts of tricuspid annular mechanics, key device and procedural implications, and highlight current knowledge gaps for future consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Abbreviations

AVN:

Atrioventricular node

RA:

Right atrium

RCA:

Right coronary artery

RV:

Right ventricle

TTVD:

Transcatheter tricuspid valve device

TV:

Tricuspid valve

References

  1. Abdelghani, M., J. Schofer, and O. I. Soliman. Transcatheter interventions for tricuspid regurgitation: rationale, overview of current technologies, and future perspectives. Practical manual of tricuspid valve diseases. Berlin: Springer, pp. 353–377, 2018.

    Google Scholar 

  2. Addetia, K., D. Muraru, F. Veronesi, C. Jenei, G. Cavalli, S. A. Besser, et al. 3-Dimensional echocardiographic analysis of the tricuspid annulus provides new insights into tricuspid valve geometry and dynamics. JACC Cardiovasc. Imaging. 20:17, 2017. https://doi.org/10.1016/j.jcmg.2017.08.022.

    Article  Google Scholar 

  3. Al Aloul, B., G. Sigurdsson, I. Can, J. M. Li, R. Dykoski, and V. N. Tholakanahalli. Proximity of right coronary artery to cavotricuspid isthmus as determined by computed tomography. Pacing Clin. Electrophysiol. 33(11):1319–1323, 2010. https://doi.org/10.1111/j.1540-8159.2010.02844.x.

    Article  Google Scholar 

  4. Anwar, A. M., O. I. Soliman, A. Nemes, R. J. van Geuns, M. L. Geleijnse, and F. J. Ten Cate. Value of assessment of tricuspid annulus: real-time three-dimensional echocardiography and magnetic resonance imaging. Int. J. Cardiovasc. Imaging 23(6):701–705, 2007. https://doi.org/10.1007/s10554-006-9206-4.

    Article  Google Scholar 

  5. Asmarats, L., R. Puri, A. Latib, J. L. Navia, and J. Rodes-Cabau. Transcatheter tricuspid valve interventions: landscape, challenges, and future directions. J. Am. Coll. Cardiol. 71(25):2935–2956, 2018. https://doi.org/10.1016/j.jacc.2018.04.031.

    Article  Google Scholar 

  6. Basu, A., and Z. He. Annulus tension on the tricuspid valve: an in-vitro study. Cardiovasc. Eng. Technol. 7(3):270–279, 2016. https://doi.org/10.1007/s13239-016-0267-9.

    Article  Google Scholar 

  7. Campelo-Parada, F., O. Lairez, and D. Carrié. Percutaneous treatment of the tricuspid valve disease: new hope for the “forgotten” valve. Rev. Esp. Cardiol. 70(10):856–866, 2017.

    Article  Google Scholar 

  8. Carpentier, A., D. H. Adams, and F. Filsoufi. Carpentier’s reconstructive valve surgery e-book. Amstrerdam: Elsevier Health Sciences, 2011.

    Google Scholar 

  9. Chan, J. L., M. Li, D. Mazilu, J. G. Miller, A. C. Diaconescu, and K. A. Horvath. Novel direct annuloplasty fastener system for minimally invasive mitral valve repair. Cardiovasc. Eng. Technol. 9(1):53–59, 2018.

    Article  Google Scholar 

  10. Diez-Villanueva, P., E. Gutierrez-Ibanes, G. P. Cuerpo-Caballero, R. Sanz-Ruiz, M. Abeytua, J. Soriano, et al. Direct injury to right coronary artery in patients undergoing tricuspid annuloplasty. Ann. Thorac. Surg. 97(4):1300–1305, 2014. https://doi.org/10.1016/j.athoracsur.2013.12.021.

    Article  Google Scholar 

  11. Fawzy, H., K. Fukamachi, C. D. Mazer, A. Harrington, D. Latter, D. Bonneau, et al. Complete mapping of the tricuspid valve apparatus using three-dimensional sonomicrometry. J. Thorac. Cardiovasc. Surg. 141(4):1037–1043, 2011. https://doi.org/10.1016/j.jtcvs.2010.05.039.

    Article  Google Scholar 

  12. Fukuda, S., G. Saracino, Y. Matsumura, M. Daimon, H. Tran, N. L. Greenberg, et al. Three-dimensional geometry of the tricuspid annulus in healthy subjects and in patients with functional tricuspid regurgitation: a real-time, 3-dimensional echocardiographic study. Circulation 114(1 Suppl):I492–I498, 2006. https://doi.org/10.1161/CIRCULATIONAHA.105.000257.

    Article  Google Scholar 

  13. Granada, J. F., and T. Vahl. Catheter-based intervention of the “forgotten” valve: time to reconsider tricuspid valve intervention? JACC Basic. Transl. Sci. 3(1):80–82, 2018. https://doi.org/10.1016/j.jacbts.2018.01.009.

    Article  Google Scholar 

  14. Hahn, R. T. Tricuspid annular morphology: focus on the forgotten. JACC Cardiovasc. Imaging. 2018. https://doi.org/10.1016/j.jcmg.2017.11.042.

    Article  Google Scholar 

  15. Hiro, M. E., J. Jouan, M. R. Pagel, E. Lansac, K. H. Lim, H. S. Lim, et al. Sonometric study of the normal tricuspid valve annulus in sheep. J. Heart Valve Dis. 13(3):452–460, 2004.

    Google Scholar 

  16. ISO. ISO 5910:2018 Cardiovascular implants and extracorporeal systems—cardiac valve repair devices. Geneva: International Standards Organization, 2018.

    Google Scholar 

  17. Jazwiec, T., M. Malinowski, A. G. Proudfoot, L. Eberhart, D. Langholz, H. Schubert, et al. Tricuspid valvular dynamics and 3-dimensional geometry in awake and anesthetized sheep. J. Thorac. Cardiovasc. Surg. 20:18, 2018. https://doi.org/10.1016/j.jtcvs.2018.04.065.

    Article  Google Scholar 

  18. Jones-Haywood, M. M., C. Combs, M. Pu, S. K. Gandhi, R. Dhawan, and D. K. Tempe. Percutaneous closure of mitral paravalvular leak. J. Cardiothorac. Vasc. Anesth. 27(1):168–177, 2013. https://doi.org/10.1053/j.jvca.2012.07.006.

    Article  Google Scholar 

  19. Jouan, J., M. R. Pagel, M. E. Hiro, K. H. Lim, E. Lansac, and C. M. Duran. Further information from a sonometric study of the normal tricuspid valve annulus in sheep: geometric changes during the cardiac cycle. J. Heart Valve Dis. 16(5):511–518, 2007.

    Google Scholar 

  20. Kawada, N., H. Naganuma, K. Muramatsu, H. Ishibashi-Ueda, K. Bando, and K. Hashimoto. Redefinition of tricuspid valve structures for successful ring annuloplasty. J. Thorac. Cardiovasc. Surg. 20:17, 2017. https://doi.org/10.1016/j.jtcvs.2017.12.045.

    Article  Google Scholar 

  21. Khan, J. M., T. Rogers, W. H. Schenke, A. B. Greenbaum, V. C. Babaliaros, G. Paone, et al. Transcatheter pledget-assisted suture tricuspid annuloplasty (PASTA) to create a double-orifice valve. Catheter Cardiovasc Interv 20:18, 2018. https://doi.org/10.1002/ccd.27531.

    Article  Google Scholar 

  22. Kong, F., T. Pham, C. Martin, R. McKay, C. Primiano, S. Hashim, et al. Finite element analysis of tricuspid valve deformation from multi-slice computed tomography images. Ann. Biomed. Eng. 2018. https://doi.org/10.1007/s10439-018-2024-8.

    Article  Google Scholar 

  23. Kragsnaes, E. S., J. L. Honge, J. B. Askov, J. M. Hasenkam, H. Nygaard, S. L. Nielsen, et al. In-plane tricuspid valve force measurements: development of a strain gauge instrumented annuloplasty ring. Cardiovasc. Eng. Technol. 4(2):131–138, 2013. https://doi.org/10.1007/s13239-013-0135-9.

    Article  Google Scholar 

  24. Kuwata, S., M. Taramasso, F. Nietlispach, and F. Maisano. Transcatheter tricuspid valve repair toward a surgical standard: first-in-man report of direct annuloplasty with a cardioband device to treat severe functional tricuspid regurgitation. Eur. Heart J. 38(16):1261, 2017. https://doi.org/10.1093/eurheartj/ehw660.

    Article  Google Scholar 

  25. Latib, A., and A. Mangieri. Transcatheter tricuspid valve repair: new valve, new opportunities. New challenges. J. Am. Coll. Cardiol. 69(14):1807–1810, 2017. https://doi.org/10.1016/j.jacc.2017.02.016.

    Article  Google Scholar 

  26. Levack, M. M., M. Vergnat, A. T. Cheung, M. A. Acker, R. C. Gorman, and J. H. Gorman, 3rd. Annuloplasty ring dehiscence in ischemic mitral regurgitation. Ann. Thorac. Surg. 94(6):2132, 2012. https://doi.org/10.1016/j.athoracsur.2012.04.051.

    Article  Google Scholar 

  27. Madukauwa-David, I. D., E. L. Pierce, F. Sulejmani, J. Pataky, W. Sun, and A. P. Yoganathan. Suture dehiscence and collagen content in the human mitral and tricuspid annuli. Biomech. Model. Mechanobiol. 1:9, 2018. https://doi.org/10.1007/s10237-018-1082-z.

    Article  Google Scholar 

  28. Maffessanti, F., P. Gripari, G. Pontone, D. Andreini, E. Bertella, S. Mushtaq, et al. Three-dimensional dynamic assessment of tricuspid and mitral annuli using cardiovascular magnetic resonance. Eur. Heart J. Cardiovasc. Imaging. 14(10):986–995, 2013. https://doi.org/10.1093/ehjci/jet004.

    Article  Google Scholar 

  29. Mahmood, F., H. Kim, B. Chaudary, R. Bergman, R. Matyal, J. Gerstle, et al. Tricuspid annular geometry: a three-dimensional transesophageal echocardiographic study. J. Cardiothorac. Vasc. Anesth. 27(4):639–646, 2013. https://doi.org/10.1053/j.jvca.2012.12.014.

    Article  Google Scholar 

  30. Malinowski, M., T. Jazwiec, M. Goehler, N. Quay, J. Bush, S. Jovinge, et al. Sonomicrometry-derived 3-dimensional geometry of the human tricuspid annulus. J Thorac. Cardiovasc. Surg. 20:18, 2018. https://doi.org/10.1016/j.jtcvs.2018.08.110.

    Article  Google Scholar 

  31. Malinowski, M., H. Schubert, J. Wodarek, H. Ferguson, L. Eberhart, D. Langholz, et al. Tricuspid annular geometry and strain after suture annuloplasty in acute ovine right Heart failure. Ann. Thorac. Surg. 106(6):1804–1811, 2018. https://doi.org/10.1016/j.athoracsur.2018.05.057.

    Article  Google Scholar 

  32. Malinowski, M., P. Wilton, A. Khaghani, M. Brown, D. Langholz, V. Hooker, et al. The effect of acute mechanical left ventricular unloading on ovine tricuspid annular size and geometry. Interact. Cardiovasc. Thorac. Surg. 23(3):391–396, 2016. https://doi.org/10.1093/icvts/ivw138.

    Article  Google Scholar 

  33. Malinowski, M., P. Wilton, A. Khaghani, D. Langholz, V. Hooker, L. Eberhart, et al. The effect of pulmonary hypertension on ovine tricuspid annular dynamics. Eur. J. Cardiothorac. Surg. 49(1):40–45, 2016. https://doi.org/10.1093/ejcts/ezv052.

    Article  Google Scholar 

  34. Owais, K., C. E. Taylor, L. Jiang, K. R. Khabbaz, M. Montealegre-Gallegos, R. Matyal, et al. Tricuspid annulus: a three-dimensional deconstruction and reconstruction. Ann. Thorac. Surg. 98(5):1536–1542, 2014. https://doi.org/10.1016/j.athoracsur.2014.07.005.

    Article  Google Scholar 

  35. Paul, D. M., A. Naran, E. L. Pierce, C. H. T. Bloodworth, S. F. Yoganathan, and A. P. Bolling. Suture dehiscence in the tricuspid annulus: an ex vivo analysis of tissue strength and composition. Ann. Thorac. Surg. 104(3):820–826, 2017. https://doi.org/10.1016/j.athoracsur.2017.02.040.

    Article  Google Scholar 

  36. Pfannmüller, B., T. Doenst, K. Eberhardt, J. Seeburger, M. A. Borger, and F. W. Mohr. Increased risk of dehiscence after tricuspid valve repair with rigid annuloplasty rings. J. Thorac. Cardiovasc. Surg. 143(5):1050–1055, 2012.

    Article  Google Scholar 

  37. Pierce, E. L., C. H. Bloodworth, IV, A. W. Siefert, T. F. Easley, T. Takayama, T. Kawamura, et al. Mitral annuloplasty ring suture forces: Impact of surgeon, ring, and use conditions. J. Thorac. Cardiovasc. Surg. 155(1):1319.e3, 2018.

    Article  Google Scholar 

  38. Pierce, E. L., J. Gentile, A. W. Siefert, R. C. Gorman, J. H. Gorman, and A. P. Yoganathan. Real-time recording of annuloplasty suture dehiscence reveals a potential mechanism for dehiscence cascade. J. Thorac. Cardiovasc. Surg. 152(1):e15–e17, 2016.

    Article  Google Scholar 

  39. Pierce, E. L., A. W. Siefert, D. M. Paul, S. K. Wells, C. H. Bloodworth, S. Takebayashi, et al. How local annular force and collagen density govern mitral annuloplasty ring dehiscence risk. Ann. Thorac. Surg. 102(2):518–526, 2016.

    Article  Google Scholar 

  40. Prihadi, E. A., V. Delgado, R. T. Hahn, J. Leipsic, J. K. Min, and J. J. Bax. Imaging needs in novel transcatheter tricuspid valve interventions. JACC Cardiovasc Imaging. 11(5):736–754, 2018. https://doi.org/10.1016/j.jcmg.2017.10.029.

    Article  Google Scholar 

  41. Rabbah, J.-P. M., N. Saikrishnan, A. W. Siefert, A. Santhanakrishnan, and A. P. Yoganathan. mechanics of healthy and functionally diseased mitral valves: a critical review. J. Biomech. Eng. 135(2):021007–0210016, 2013. https://doi.org/10.1115/1.4023238.

    Article  Google Scholar 

  42. Racker, D. K., P. C. Ursell, and B. F. Hoffman. Anatomy of the tricuspid annulus. Circumferential myofibers as the structural basis for atrial flutter in a canine model. Circulation 84(2):841–851, 1991.

    Article  Google Scholar 

  43. Ramakrishna, H. Incidental TOE finding—carpentier mitral annuloplasty ring dehiscence during heart transplantation. Ann Card Anaesth. 11(1):49–50, 2008.

    Article  Google Scholar 

  44. Rausch, M. K., M. Malinowski, W. D. Meador, P. Wilton, A. Khaghani, and T. A. Timek. The effect of acute pulmonary hypertension on tricuspid annular height, strain, and curvature in sheep. Cardiovasc Eng Technol. 9(3):365–376, 2018. https://doi.org/10.1007/s13239-018-0367-9.

    Article  Google Scholar 

  45. Rausch, M. K., M. Malinowski, P. Wilton, A. Khaghani, and T. A. Timek. Engineering analysis of tricuspid annular dynamics in the beating ovine heart. Ann. Biomed. Eng. 46(3):443–451, 2018. https://doi.org/10.1007/s10439-017-1961-y.

    Article  Google Scholar 

  46. Ring, L., B. S. Rana, A. Kydd, J. Boyd, K. Parker, and R. A. Rusk. Dynamics of the tricuspid valve annulus in normal and dilated right hearts: a three-dimensional transoesophageal echocardiography study. Eur. Heart J. Cardiovasc. Imaging. 13(9):756–762, 2012. https://doi.org/10.1093/ehjci/jes040.

    Article  Google Scholar 

  47. Rosser, B. A., M. Taramasso, and F. Maisano. Transcatheter interventions for tricuspid regurgitation: TriCinch (4Tech). EuroIntervention 12:Y110–Y112, 2016. https://doi.org/10.4244/eijv12sya30.

    Article  Google Scholar 

  48. Salgo, I. S., J. H. Gorman, R. C. Gorman, B. M. Jackson, F. W. Bowen, T. Plappert, et al. Effect of annular shape on leaflet curvature in reducing mitral leaflet stress. Circulation 106(6):711–717, 2002. https://doi.org/10.1161/01.cir.0000025426.39426.83.

    Article  Google Scholar 

  49. Schofer, J., K. Bijuklic, C. Tiburtius, L. Hansen, A. Groothuis, and R. T. Hahn. First-in-human transcatheter tricuspid valve repair in a patient with severely regurgitant tricuspid valve. J. Am. Coll. Cardiol. 65(12):1190–1195, 2015. https://doi.org/10.1016/j.jacc.2015.01.025.

    Article  Google Scholar 

  50. Shapira, A. R., M. F. Stoddard, and B. Dawn. Images in cardiovascular medicine. Dehiscence of mitral annuloplasty ring. Circulation 112(18):e305, 2005. https://doi.org/10.1161/01.CIRCULATIONAHA.104.509570.

    Article  Google Scholar 

  51. Siefert, A. W., and R. L. Siskey. Bench models for assessing the mechanics of mitral valve repair and percutaneous surgery. Cardiovasc. Eng. Technol. 6(2):193–207, 2015.

    Article  Google Scholar 

  52. Silver, M., J. Lam, N. Ranganathan, and E. Wigle. Morphology of the human tricuspid valve. Circulation 43(3):333–348, 1971.

    Article  Google Scholar 

  53. Spinner, E. M., D. Buice, C. H. Yap, and A. P. Yoganathan. The effects of a three-dimensional, saddle-shaped annulus on anterior and posterior leaflet stretch and regurgitation of the tricuspid valve. Ann. Biomed. Eng. 40(5):996–1005, 2012. https://doi.org/10.1007/s10439-011-0471-6.

    Article  Google Scholar 

  54. Spratt, J. R., J. A. Spratt, V. Beachley, and Q. Kang. Strength comparison of mitral annuloplasty ring and suturing combinations: an in vitro study. J. Heart Valve Dis. 21(3):286–292, 2012.

    Google Scholar 

  55. Stevanella, M., E. Votta, M. Lemma, C. Antona, and A. Redaelli. Finite element modelling of the tricuspid valve: a preliminary study. Med. Eng. Phys. 32(10):1213–1223, 2010. https://doi.org/10.1016/j.medengphy.2010.08.013.

    Article  Google Scholar 

  56. Taramasso, M., A. Pozzoli, A. Guidotti, F. Nietlispach, D. T. Inderbitzin, S. Benussi, et al. Percutaneous tricuspid valve therapies: the new frontier. Eur. Heart J. 38(9):639–647, 2017. https://doi.org/10.1093/eurheartj/ehv766.

    Article  Google Scholar 

  57. Tei, C., J. P. Pilgrim, P. M. Shah, J. A. Ormiston, and M. Wong. The tricuspid valve annulus: study of size and motion in normal subjects and in patients with tricuspid regurgitation. Circulation 66(3):665–671, 1982.

    Article  Google Scholar 

  58. Troxler, L. G., E. M. Spinner, and A. P. Yoganathan. Measurement of strut chordal forces of the tricuspid valve using miniature C ring transducers. J. Biomech. 45(6):1084–1091, 2012. https://doi.org/10.1016/j.jbiomech.2011.12.004.

    Article  Google Scholar 

  59. Tsang, W., G. Wu, D. Rozenberg, J. Mosko, and H. Leong-Poi. Early mitral annuloplasty ring dehiscence with migration to the descending aorta. J. Am. Coll. Cardiol. 54(17):1629, 2009. https://doi.org/10.1016/j.jacc.2009.03.090.

    Article  Google Scholar 

  60. van Rosendael, P. J., V. Kamperidis, W. K. Kong, A. R. van Rosendael, F. van der Kley, N. Ajmone Marsan, et al. Computed tomography for planning transcatheter tricuspid valve therapy. Eur. Heart J. 38(9):665–674, 2017. https://doi.org/10.1093/eurheartj/ehw499.

    Article  Google Scholar 

  61. Wang, D. D., J. C. Lee, B. P. O’Neill, and W. W. O’Neill. Multimodality imaging of the tricuspid valve for assessment and guidance of transcatheter repair. Interv Cardiol Clin. 7(3):379–386, 2018. https://doi.org/10.1016/j.iccl.2018.04.001.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the histological work performed by Dr. Renu Virmani of CV Path in Gaithersburg, Maryland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajit P. Yoganathan.

Ethics declarations

Conflict of interest

Shelly Singh-Gryzbon, Eric L. Pierce and Ajit P. Yoganathan have no conflicts of interest relevant to this review article. Andrew W. Siefert is an employee of Cardiac Implants LLC.

Ethical Approval

No human or animal studies were carried out by the authors for this article.

Additional information

Associate Editor Karyn Kunzelman oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh-Gryzbon, S., Siefert, A.W., Pierce, E.L. et al. Tricuspid Valve Annular Mechanics: Interactions with and Implications for Transcatheter Devices. Cardiovasc Eng Tech 10, 193–204 (2019). https://doi.org/10.1007/s13239-019-00405-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-019-00405-6

Keywords

Navigation