Skip to main content
Log in

Computational Fluid Dynamics Assessment Associated with Transcatheter Heart Valve Prostheses: A Position Paper of the ISO Working Group

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

The governing international standard for the development of prosthetic heart valves is International Organization for Standardization (ISO) 5840. This standard requires the assessment of the thrombus potential of transcatheter heart valve substitutes using an integrated thrombus evaluation. Besides experimental flow field assessment and ex vivo flow testing, computational fluid dynamics is a critical component of this integrated approach. This position paper is intended to provide and discuss best practices for the setup of a computational model, numerical solving, post-processing, data evaluation and reporting, as it relates to transcatheter heart valve substitutes. This paper is not intended to be a review of current computational technology; instead, it represents the position of the ISO working group consisting of experts from academia and industry with regards to considerations for computational fluid dynamic assessment of transcatheter heart valve substitutes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Adams, D. H., J. J. Popma, M. J. Reardon, S. J. Yakubov, J. S. Coselli, G. M. Deeb, et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N. Engl. J. Med. 370(19):1790–1798, 2014. https://doi.org/10.1056/NEJMoa1400590.

    Article  Google Scholar 

  2. Anand, M., and K. Rajagopal. A short review of advances in the modelling of blood rheology and clot formation. Fluids 2017. https://doi.org/10.3390/fluids2030035.

    Article  Google Scholar 

  3. Ballyk, P. D., D. A. Steinman, and C. R. Ethier. Simulation of non-Newtonian blood flow in an end-to-side anastomosis. Biorheology 31(5):565–586, 1994.

    Article  Google Scholar 

  4. Berg, P., S. Saalfeld, S. Voß, T. Redel, B. Preim, G. Janiga, et al. Does the DSA reconstruction kernel affect hemodynamic predictions in intracranial aneurysms? An analysis of geometry and blood flow variations. J. NeuroInterv. Surg. 13:290–296, 2017.

    Google Scholar 

  5. Bianchi, M., G. Marom, R. P. Ghosh, H. A. Fernandez, J. R. Taylor, Jr, M. J. Slepian, et al. Effect of balloon-expandable transcatheter aortic valve replacement positioning: a patient-specific numerical model. Artif. Org. 40(12):E292–E304, 2016. https://doi.org/10.1111/aor.12806.

    Article  Google Scholar 

  6. Bluestein, D., S. Einav, and M. J. Slepian. Device thrombogenicity emulation: a novel methodology for optimizing the thromboresistance of cardiovascular devices. J. Biomech. 46(2):338–344, 2013. https://doi.org/10.1016/j.jbiomech.2012.11.033.

    Article  Google Scholar 

  7. Bruening, J., F. Hellmeier, P. Yevtushenko, M. Kelm, S. Nordmeyer, S. H. Sündermann, et al. Impact of patient-specific LVOT inflow profiles on aortic valve prosthesis and ascending aorta hemodynamics. J. Comput. Sci. 2017. https://doi.org/10.1016/j.jocs.2017.11.005.

    Article  Google Scholar 

  8. Chakravarty, T., L. Søndergaard, J. Friedman, O. De Backer, D. Berman, K. F. Kofoed, et al. Subclinical leaflet thrombosis in surgical and transcatheter bioprosthetic aortic valves: an observational study. The Lancet 6736(17):1–10, 2017. https://doi.org/10.1016/S0140-6736(17)30757-2.

    Article  Google Scholar 

  9. Committee, V. Standard for verification and validation in computational fluid dynamics and heat transfer. New York: American Society of Mechanical Engineers, 2009.

    Google Scholar 

  10. Dasi, L. P., H. Hatoum, A. Kheradvar, R. Zareian, S. H. Alavi, W. Sun, et al. On the mechanics of transcatheter aortic valve replacement. Ann. Biomed. Eng. 45(2):310–331, 2017. https://doi.org/10.1007/s10439-016-1759-3.

    Article  Google Scholar 

  11. De Marchena, E., J. Mesa, S. Pomenti, C. M. y Kall, X. Marincic, K. Yahagi, et al. Thrombus formation following transcatheter aortic valve replacement. JACC Cardiovasc. Interv. 8(5):728–739, 2015. https://doi.org/10.1016/j.jcin.2015.03.005.

    Article  Google Scholar 

  12. Egbe, A. C., S. V. Pislaru, P. A. Pellikka, J. T. Poterucha, H. V. Schaff, J. J. Maleszewski, et al. Bioprosthetic valve thrombosis versus structural failure: clinical and echocardiographic predictors. J. Am. Coll. Cardiol. 66(21):2285–2294, 2015. https://doi.org/10.1016/j.jacc.2015.09.022.

    Article  Google Scholar 

  13. Ferziger, J. H., and M. Peric. Computational Methods for Fluid Dynamics. Berlin: Springer, 2012.

    MATH  Google Scholar 

  14. Filipovic, N., D. Ravnic, M. Kojic, S. J. Mentzer, S. Haber, and A. Tsuda. Interactions of blood cell constituents: experimental investigation and computational modeling by discrete particle dynamics algorithm. Microvasc. Res. 75(2):279–284, 2008. https://doi.org/10.1016/j.mvr.2007.09.007.

    Article  Google Scholar 

  15. Fogelson, A. L., and K. B. Neeves. Fluid mechanics of blood clot formation. Annu. Rev. Fluid Mech. 47(1):377–403, 2015. https://doi.org/10.1146/annurev-fluid-010814-014513.

    Article  MathSciNet  Google Scholar 

  16. Fraser, K. H., M. E. Taskin, B. P. Griffith, and Z. J. Wu. The use of computational fluid dynamics in the development of ventricular assist devices. Med. Eng. Phys. 33(3):263–280, 2011. https://doi.org/10.1016/j.medengphy.2010.10.014.

    Article  Google Scholar 

  17. Fung, Y.-C. Biomechanics: Mechanical Properties of Living Tissues. New York: Springer, 1993.

    Book  Google Scholar 

  18. Ge, L., S. C. Jones, F. Sotiropoulos, T. M. Healy, and A. P. Yoganathan. Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J. Biomech. Eng. 125(5):709–718, 2003. https://doi.org/10.1115/1.1614817.

    Article  Google Scholar 

  19. Gravel, G. M., and P. Généreux. Exploring the role of transcatheter aortic valve replacement as the preferred treatment for lower-risk patients. J. Am. Coll. Cardiol. 66(14):1638–1639, 2015. https://doi.org/10.1016/j.jacc.2015.06.1346.

    Article  Google Scholar 

  20. Hansson, N. C., E. L. Grove, H. R. Andersen, J. Leipsic, O. N. Mathiassen, J. M. Jensen, et al. Transcatheter aortic valve thrombosis: incidence, predisposing factors, and clinical implications. J. Am. Coll. Cardiol. 68(19):2059–2069, 2016. https://doi.org/10.1016/j.jacc.2016.08.010.

    Article  Google Scholar 

  21. Hariharan, P., G. A. D’Souza, M. Horner, T. M. Morrison, R. A. Malinauskas, and M. R. Myers. Use of the FDA nozzle model to illustrate validation techniques in computational fluid dynamics (CFD) simulations. PLoS ONE. 12(6):e0178749, 2017. https://doi.org/10.1371/journal.pone.0178749.

    Article  Google Scholar 

  22. Holmes, D. R., and M. J. Mack. Aortic valve bioprostheses: leaflet immobility and valve thrombosis. Circulation 135(18):1749–1756, 2017. https://doi.org/10.1161/CIRCULATIONAHA.116.025429.

    Article  Google Scholar 

  23. Holzapfel, G. A., T. C. Gasser, and R. W. Ogden. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J. Elast. 61(1–3):1–48, 2000. https://doi.org/10.1023/A:1010835316564.

    Article  MathSciNet  MATH  Google Scholar 

  24. International Standards O. ISO 5840-3:2013 cardiovascular implants—cardiac valve prostheses. Part 3: heart valve substitutes implanted by transcatheter techniques. 2013.

  25. Karimi, S., M. Dabagh, P. Vasava, M. Dadvar, B. Dabir, and P. Jalali. Effect of rheological models on the hemodynamics within human aorta: CFD study on CT image-based geometry. J. Non-Newton. Fluid Mech. 207:42–52, 2014. https://doi.org/10.1016/j.jnnfm.2014.03.007.

    Article  Google Scholar 

  26. Kheradvar, A., E. M. Groves, A. Falahatpisheh, M. K. Mofrad, S. Hamed Alavi, R. Tranquillo, et al. Emerging trends in heart valve engineering: part IV. Computational modeling and experimental studies. Ann. Biomed. Eng. 43(10):2314–2333, 2015. https://doi.org/10.1007/s10439-015-1394-4.

    Article  Google Scholar 

  27. Laschinger, J. C., C. Wu, N. G. Ibrahim, and J. E. Shuren. Reduced leaflet motion in bioprosthetic aortic valves-the FDA perspective. N. Engl. J. Med. 373(21):1996–1998, 2015. https://doi.org/10.1056/NEJMp1512264.

    Article  Google Scholar 

  28. Leetmaa, T., N. C. Hansson, J. Leipsic, K. Jensen, S. H. Poulsen, H. R. Andersen, et al. Early aortic transcatheter heart valve thrombosis: diagnostic value of contrast-enhanced multidetector computed tomography. Circ. Cardiovasc. Interv. 2015. https://doi.org/10.1161/circinterventions.114.001596.

    Article  Google Scholar 

  29. Leon, M. B. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363(17):1597–1607, 2010. https://doi.org/10.1056/NEJMoa1008232.

    Article  Google Scholar 

  30. Leon, M. B., C. R. Smith, M. J. Mack, R. R. Makkar, L. G. Svensson, S. K. Kodali, et al. Transcatheter or surgical aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 374(17):1609–1620, 2016. https://doi.org/10.1056/NEJMoa1514616.

    Article  Google Scholar 

  31. Makkar, R. R., G. Fontana, H. Jilaihawi, T. Chakravarty, K. F. Kofoed, O. de Backer, et al. Possible subclinical leaflet thrombosis in bioprosthetic aortic valves. N. Engl. J. Med. 373(21):2015–2024, 2015. https://doi.org/10.1056/NEJMoa1509233.

    Article  Google Scholar 

  32. Malinauskas, R. A., P. Hariharan, S. W. Day, L. H. Herbertson, M. Buesen, U. Steinseifer, et al. FDA benchmark medical device flow models for CFD validation. ASAIO J. 63(2):150–160, 2017.

    Article  Google Scholar 

  33. Mao, W., K. Li, and W. Sun. Fluid-structure interaction study of transcatheter aortic valve dynamics using smoothed particle hydrodynamics. Cardiovasc. Eng. Technol. 7(4):374–388, 2016. https://doi.org/10.1007/s13239-016-0285-7.

    Article  Google Scholar 

  34. Marom, G. Numerical methods for fluid-structure interaction models of aortic valves. Arch. Comput. Methods Eng. 22(4):595–620, 2014. https://doi.org/10.1007/s11831-014-9133-9.

    Article  MathSciNet  MATH  Google Scholar 

  35. Marsden, A. L. Multi-scale modeling of cardiovascular flows. In: Computational Bioengineering. CRC Press, 2015, pp. 163–189.

  36. Midha, P. A., V. Raghav, R. Sharma, J. F. Condado, I. U. Okafor, T. Rami, et al. The fluid mechanics of transcatheter heart valve leaflet thrombosis in the neo-sinus. Circulation 2017. https://doi.org/10.1161/CIRCULATIONAHA.117.029479.

    Article  Google Scholar 

  37. Min Yun, B., C. K. Aidun, and A. P. Yoganathan. Blood damage through a bileaflet mechanical heart valve: a quantitative computational study using a multiscale suspension flow solver. J. Biomech. Eng. 136(10):101009, 2014. https://doi.org/10.1115/1.4028105.

    Article  Google Scholar 

  38. Moghadam, M. E., F. Migliavacca, I. E. Vignon-Clementel, T.-Y. Hsia, and A. L. Marsden. Optimization of shunt placement for the Norwood surgery using multi-domain modeling. J. Biomech. Eng. 134(5):051002, 2012. https://doi.org/10.1115/1.4006814.

    Article  Google Scholar 

  39. Nishimura, R. A., Otto, C. M., Bonow, R. O., Ruiz, C. E., Skubas, N. J., and Sorajja, P. 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. 2014.

  40. Oberkampf, W. L., and T. G. Trucano. Verification and validation benchmarks. Nucl. Eng. Des. 238(3):716–743, 2008. https://doi.org/10.1016/j.nucengdes.2007.02.032.

    Article  Google Scholar 

  41. Piatti, F., F. Sturla, G. Marom, J. Sheriff, T. E. Claiborne, M. J. Slepian, et al. Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid-structure interaction approach. J. Biomech. 48(13):3650–3658, 2015. https://doi.org/10.1016/j.jbiomech.2015.08.009.

    Article  Google Scholar 

  42. Piazza, N., B. Kalesan, N. van Mieghem, S. Head, P. Wenaweser, T. P. Carrel, et al. A 3-center comparison of 1-year mortality outcomes between transcatheter aortic valve implantation and surgical aortic valve replacement on the basis of propensity score matching among intermediate-risk surgical patients. JCIN 6(5):443–451, 2013. https://doi.org/10.1016/j.jcin.2013.01.136.

    Article  Google Scholar 

  43. Popma, J. J., D. H. Adams, M. J. Reardon, S. J. Yakubov, N. S. Kleiman, D. Heimansohn, et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J. Am. Coll. Cardiol. 63(19):1972–1981, 2014. https://doi.org/10.1016/j.jacc.2014.02.556.

    Article  Google Scholar 

  44. Quarteroni, A., S. Ragni, and A. Veneziani. Coupling between lumped and distributed models for blood flow problems. Comput. Vis. Sci. 4(2):111–124, 2001. https://doi.org/10.1007/s007910100063.

    Article  MathSciNet  MATH  Google Scholar 

  45. Quarteroni, A., A. Veneziani, and C. Vergara. Geometric multiscale modeling of the cardiovascular system, between theory and practice. Comput. Methods Appl. Mech. Eng. 302:193–252, 2016. https://doi.org/10.1016/j.cma.2016.01.007.

    Article  MathSciNet  MATH  Google Scholar 

  46. Reporting of Computational Modeling Studies in Medical Device Submissions. https://www.fda.gov/downloads/MedicalDevices/DeviceRegulationandGuidance/GuidanceDocuments/UCM381813.pdf.

  47. Sagar, A., and J. Varner. Dynamic modeling of the human coagulation cascade using reduced order effective kinetic models. Processes 3(4):178–203, 2015. https://doi.org/10.3390/pr3010178.

    Article  Google Scholar 

  48. Schwer, L. E. An overview of the PTC 60/V&V 10: guide for verification and validation in computational solid mechanics. Eng. Comput. 23(4):245–252, 2007. https://doi.org/10.1007/s00366-007-0072-z.

    Article  Google Scholar 

  49. Siguenza, J., D. Pott, S. Mendez, S. J. Sonntag, T. A. S. Kaufmann, U. Steinseifer, et al. Fluid-structure interaction of a pulsatile flow with an aortic valve model: a combined experimental and numerical study. Int. J. Numer. Method Biomed. Eng. 2017. https://doi.org/10.1002/cnm.2945.

    Article  Google Scholar 

  50. Smith, C. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364(23):2187–2198, 2011. https://doi.org/10.1056/NEJMoa1103510.

    Article  Google Scholar 

  51. Sonntag, S. J., M. Kutting, P. F. Ghalati, T. Kaufmann, J. Vazquez-Jimenez, U. Steinseifer, et al. Effect of pulmonary conduit oversizing on hemodynamics in children. Int. J. Artif. Org. 38(10):548–556, 2015. https://doi.org/10.5301/ijao.5000443.

    Article  Google Scholar 

  52. Sun, W., C. Martin, and T. Pham. Computational modeling of cardiac valve function and intervention. Annu. Rev. Biomed. Eng. 16(1):53–76, 2014. https://doi.org/10.1146/annurev-bioeng-071813-104517.

    Article  Google Scholar 

  53. Sun, W., and M. S. Sacks. Finite element implementation of a generalized Fung-elastic constitutive model for planar soft tissues. Biomech. Model. Mechanobiol. 4(2–3):190–199, 2005. https://doi.org/10.1007/s10237-005-0075-x.

    Article  Google Scholar 

  54. Tamburino, C., M. Barbanti, P. D. E. Rs, M. Ranucci, F. Onorati, R. D. Covello, et al. 1-Year outcomes after transfemoral transcatheter or surgical aortic valve replacement. J. Am. Coll. Cardiol. 66(7):804–812, 2015. https://doi.org/10.1016/j.jacc.2015.06.013.

    Article  Google Scholar 

  55. Taylor, J. O., B. C. Good, A. V. Paterno, P. Hariharan, S. Deutsch, R. A. Malinauskas, et al. Analysis of transitional and turbulent flow through the FDA benchmark nozzle model using laser doppler velocimetry. Cardiovasc. Eng. Technol. 7(3):191–209, 2016. https://doi.org/10.1007/s13239-016-0270-1.

    Article  Google Scholar 

  56. Thyregod, H. G. H., S. Daniel Andreas, I. Nikolaj, and H. Nissen. Transcatheter versus surgical aortic valve replacement in patients with severe aortic valve stenosis. J. Am. Coll. Cardiol. 65(20):2184–2194, 2015. https://doi.org/10.1016/j.jacc.2015.03.014.

    Article  Google Scholar 

  57. Toma, M., A. Krdey, S. Takagi, and M. Oshima. Strongly coupled fluid-structure interaction cardiovascular analysis with the effect of peripheral network. SEISAN KENKYU 63(3):339–344, 2011. https://doi.org/10.11188/seisankenkyu.63.339.

    Article  Google Scholar 

  58. Tosenberger, A., F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev, and V. Volpert. Modelling of platelet-fibrin clot formation in flow with a DPD-PDE method. J. Math. Biol. 72(3):649–681, 2016. https://doi.org/10.1007/s00285-015-0891-2.

    Article  MathSciNet  MATH  Google Scholar 

  59. Vy, P., V. Auffret, P. Badel, M. Rochette, H. Le Breton, P. Haigron, et al. Review of patient-specific simulations of transcatheter aortic valve implantation. Int. J. Adv. Eng. Sci. Appl. Math. 8(1):2–24, 2015. https://doi.org/10.1007/s12572-015-0139-9.

    Article  MathSciNet  MATH  Google Scholar 

  60. Wang, Q., S. Kodali, C. Primiano, and W. Sun. Simulations of transcatheter aortic valve implantation: implications for aortic root rupture. Biomech. Model Mechanobiol. 14(1):29–38, 2015. https://doi.org/10.1007/s10237-014-0583-7.

    Article  Google Scholar 

  61. Wang, Q., C. Primiano, R. McKay, S. Kodali, and W. Sun. CT image-based engineering analysis of transcatheter aortic valve replacement. JACC Cardiovasc. Imaging 7(5):526–528, 2014. https://doi.org/10.1016/j.jcmg.2014.03.006.

    Article  Google Scholar 

  62. Wei, Z. A., M. Tree, P. M. Trusty, W. Wu, S. Singh-Gryzbon, and A. Yoganathan. The advantages of viscous dissipation rate over simplified power loss as a fontan hemodynamic metric. Ann. Biomed. Eng. 2017. https://doi.org/10.1007/s10439-017-1950-1.

    Article  Google Scholar 

  63. Wei, Z., and Z. C. Zheng. Mechanisms of wake deflection angle change behind a heaving airfoil. J. Fluid Struct. 48:1–13, 2014. https://doi.org/10.1016/j.jfluidstructs.2014.02.010.

    Article  Google Scholar 

  64. Wei, Z. A., and Z. C. Zheng. Fluid-structure-interaction simulation on energy harvesting from vortical flows by a passive heaving foil. J. Fluids Eng. 140(1):011105, 2017.

    Google Scholar 

  65. Wu, W. T., M. A. Jamiolkowski, W. R. Wagner, N. Aubry, M. Massoudi, and J. F. Antaki. Multi-constituent simulation of thrombus deposition. Sci. Rep. 7:42720, 2017. https://doi.org/10.1038/srep42720.

    Article  Google Scholar 

  66. Wu, W., D. Pott, B. Mazza, T. Sironi, E. Dordoni, C. Chiastra, et al. Fluid-structure interaction model of a percutaneous aortic valve: comparison with an in vitro test and feasibility study in a patient-specific case. Ann. Biomed. Eng. 44(2):590–603, 2016. https://doi.org/10.1007/s10439-015-1429-x.

    Article  Google Scholar 

  67. Xu, Z., N. Chen, M. M. Kamocka, E. D. Rosen, and M. Alber. A multiscale model of thrombus development. J. R. Soc. Interface 5(24):705–722, 2008. https://doi.org/10.1098/rsif.2007.1202.

    Article  Google Scholar 

  68. Xu, Z., J. Lioi, J. Mu, M. M. Kamocka, X. Liu, D. Z. Chen, et al. A multiscale model of venous thrombus formation with surface-mediated control of blood coagulation cascade. Biophys. J. 98(9):1723–1732, 2010. https://doi.org/10.1016/j.bpj.2009.12.4331.

    Article  Google Scholar 

  69. Yun, B. M., L. P. Dasi, C. K. Aidun, and A. P. Yoganathan. Computational modelling of flow through prosthetic heart valves using the entropic lattice-Boltzmann method. J. Fluid Mech. 743:170–201, 2014. https://doi.org/10.1017/jfm.2014.54.

    Article  Google Scholar 

  70. Yun, B. M., L. P. Dasi, C. K. Aidun, and A. P. Yoganathan. Highly resolved pulsatile flows through prosthetic heart valves using the entropic lattice-Boltzmann method. J. Fluid Mech. 754:122–160, 2014. https://doi.org/10.1017/jfm.2014.393.

    Article  MathSciNet  Google Scholar 

  71. Yun, B. M., D. B. McElhinney, S. Arjunon, L. Mirabella, C. K. Aidun, and A. P. Yoganathan. Computational simulations of flow dynamics and blood damage through a bileaflet mechanical heart valve scaled to pediatric size and flow. J. Biomech. 47(12):3169–3177, 2014. https://doi.org/10.1016/j.jbiomech.2014.06.018.

    Article  Google Scholar 

  72. Zakaria, M. S., F. Ismail, M. Tamagawa, A. F. A. Aziz, S. Wiriadidjaja, A. A. Basri, et al. Review of numerical methods for simulation of mechanical heart valves and the potential for blood clotting. Med. Biol. Eng. Comput. 55(9):1519–1548, 2017. https://doi.org/10.1007/s11517-017-1688-9.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Dr. Ajit Yoganathan and other ISO TC 150 committee members for their suggestions and comments on the paper. Dr. Wei Sun and Dr. Simon Johannes Sonntag in the author list are ISO members, and Dr. Zhenglun Alan Wei, Dr. Milan Toma, and Dr. Shelly Singh-Gryzbon are not ISO members but they are experts in relevant fields who work with the ISO group to develop this document.

Conflict of interest

Zhenglun Wei, Milan Toma, Shelly Singh, and Wei Sun report no conflict of interest; Simon J. Sonntag is an employee of enmodes GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Sun.

Additional information

Associate Editors Karyn Kunzelman and Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Z.A., Sonntag, S.J., Toma, M. et al. Computational Fluid Dynamics Assessment Associated with Transcatheter Heart Valve Prostheses: A Position Paper of the ISO Working Group. Cardiovasc Eng Tech 9, 289–299 (2018). https://doi.org/10.1007/s13239-018-0349-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-0349-y

Keywords

Navigation