Skip to main content
Log in

A Novel Idea to Improve Cardiac Output of Mechanical Circulatory Support Devices by Optimizing Kinetic Energy Transfer Available in Forward Moving Aortic Blood Flow

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Mechanical circulatory support devices (MCSDs) have gained widespread clinical acceptance as an effective heart failure (HF) therapy. The concept of harnessing the kinetic energy (KE) available in the forward aortic flow (AOF) is proposed as a novel control strategy to further increase the cardiac output (CO) provided by MCSDs. A complete mathematical development of the proposed theory and its application to an example MCSDs (two-segment extra-aortic cuff) are presented. To achieve improved device performance and physiologic benefit, the example MCSD timing is regulated to maximize the forward AOF KE and minimize retrograde flow. The proof-of-concept was tested to provide support with and without KE control in a computational HF model over a wide range of HF test conditions. The simulation predicted increased stroke volume (SV) by 20% (9 mL), CO by 23% (0.50 L/min), left ventricle ejection fraction (LVEF) by 23%, and diastolic coronary artery flow (CAF) by 55% (3 mL) in severe HF at a heart rate (HR) of 60 beats per minute (BPM) during counterpulsation (CP) support with KE control. The proposed KE control concept may improve performance of other MCSDs to further enhance their potential clinical benefits, which warrants further investigation. The next step is to investigate various assist technologies and determine where this concept is best applied. Then bench-test the combination of kinetic energy optimization and its associated technology choice and finally test the combination in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Abraham, W. T., S. Aggarwal, S. D. Prabhu, R. Cecere, S. V. Pamboukian, A. J. Bank, B. Sun, W. E. Pae, C. S. Hayward, P. M. McCarthy, and W. S. Peters. Ambulatory extra-aortic counterpulsation in patients with moderate to severe chronic heart failure. JACC 2(5):526–533, 2014.

    Google Scholar 

  2. Applebaum, R. M., H. H. Wun, E. S. Katz, P. A. Tunick, and I. Kronzon. Effects of intraaortic balloon counterpulsation on carotid artery blood flow. Am. Heart J. 135(5):850–854, 1998.

    Article  Google Scholar 

  3. Breitenstein D. S. Cardiovascular Modeling: The Mathematical Expression of Blood Circulation. Master’s thesis, University of Pittsburgh, PA, 1993.

  4. Cheng, A., G. Monreal, M. L. William, I. I. Michael Sobieski, and M. S. Slaughter. Extended extra-aortic counterpulsation with the C-pulse device does not alter aortic wall structure. ASAIO J. 60(6):5–7, 2014.

    Article  Google Scholar 

  5. Giridharan, G. A., C. R. Bartoli, P. A. Spence, R. D. Dowling, and S. C. Koenig. Counterpulsation with symphony prevents retrograde carotid, aortic, and coronary flows observed with intra-aortic balloon pump support. Artif. Organ. 36(7):600–606, 2012.

    Article  Google Scholar 

  6. Hunt, S. A., W. T. Abraham, M. H. Chin, A. M. Feldman, G. S. Francis, T. G. Ganiats, M. Jessup, M. A. Konstam, D. M. Mancini, K. Michl, and J. A. Oates. ACC/AHA 2005 guideline update for the diagnosis and management of chronic heart failure in the adult a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Update the 2001 Guidelines for the Evaluation and Management of Heart Failure): developed in collaboration with the American College of Chest Physicians and the International Society for Heart and Lung Transplantation: endorsed by the Heart Rhythm Society. Circulation. 112(12):e154–e235, 2005.

    Article  Google Scholar 

  7. Koenig, S. C., P. A. Spence, G. M. Pantalos, R. D. Dowling, and K. N. Litwak. Development and early testing of a simple subcutaneous counterpulsation device. ASAIO J. 52(4):362–367, 2006.

    Article  Google Scholar 

  8. Legget, M. E., W. S. Peters, F. P. Milsom, J. S. Clark, T. M. West, R. L. French, and A. F. Merry. Extra-aortic balloon counterpulsation an intraoperative feasibility study. Circulation 112(9 suppl):I–26, 2005.

    Google Scholar 

  9. Mitnovetski, S., A. A. Almeida, A. Barr, W. S. Peters, F. P. Milsom, B. Ho, and J. A. Smith. Extra-aortic implantable counterpulsation pump in chronic heart failure. Ann. Thorac. Surg. 85(6):2122–2125, 2008.

    Article  Google Scholar 

  10. Nakatani, S., S. Beppu, S. Nagata, F. Ishikura, J. Tamai, M. Yamagishi, F. Ohmori, K. Kimura, M. Takamiya, and K. Miyatake. Diastolic suction in the human ventricle: observation during balloon mitral valvuloplasty with a single balloon. Am. Heart J. 127(1):143–147, 1994.

    Article  Google Scholar 

  11. Randall, D., W. W. Burggren, K. French, and R. Eckert. Eckert Animal Physiology. Macmillan, 2002.

  12. Schulz, A., T. Krabatsch, J. D. Schmitto, R. Hetzer, M. Seidel, P. M. Dohmen, and H. Hotz. Preliminary results from the C-Pulse® OPTIONS HF European Multicenter post-market study. Med. Sci. Monit. Basic Res. 22:14–19, 2016.

    Article  Google Scholar 

  13. Simaan, M. A., A. Ferreira, S. Chen, J. F. Antaki, and D. G. Galati. A dynamical state space representation and performance analysis of a feedback-controlled rotary left ventricular assist device. IEEE Trans. Control Syst. Technol. 17(1):15–28, 2009.

    Article  Google Scholar 

  14. Solanki, P. Aortic counterpulsation: C-pulse and other devices for cardiac support. J. Cardiovasc. Transl. Res. 7(3):292–300, 2014.

    Article  Google Scholar 

  15. Tortora, G. J. and B. H. Derrickson. Principles of Anatomy & Physiology. The Cardiovascular System: Blood Vessels and Hemodynamics, 13th ed. Wiley, 2012.

  16. Wang, Y., and M. A. Simaan. A new method for detecting aortic valve dynamics during control of the rotary Left Ventricular Assist Device support. Am. Control Conf. 2014:5471–5476, 2014.

    Google Scholar 

  17. Wu, Y., P. Allaire, G. Tao, and S. T. Lim. Passive and active ventricular elastances of the left ventricle. Biomed. Eng. Online 4(1):1, 2005.

    Article  Google Scholar 

  18. Yotti, R., B. Javier, and J. C. Antoranz. A noninvasive method for assessing impaired diastolic suction in patients with dilated cardiomyopathy. Circulation 112(19):2921–2929, 2005.

    Google Scholar 

  19. Yu, Y. C. Minimally Invasive Estimation of Cardiovascular Parameters. Doctoral dissertation, Ph. D. thesis, Univ. Pittsburgh, PA. 1998.

  20. Yu, Y. C., J. R. Boston, M. A. Simaan, and J. F. Antaki. Estimation of systemic vascular bed parameters for artificial heart control. IEEE Trans. Autom. Control 43(6):765–778, 1998.

    Article  Google Scholar 

  21. Zhong, L., D. N. Ghista, E. Y. Ng, and S. T. Lim. Passive and active ventricular elastances of the left ventricle. Biomed. Eng. Online 4(1):1, 2005.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel L. Ewert.

Ethics declarations

Conflict of interest

Muhammad B. Qureshi, Jacob Glower, Daniel L. Ewert and Steven C. Koenig declare that they have no conflict of interest.

Ethical Approval

No human and animal studies were carried out by the authors for this article.

Additional information

Associate Editor John Timothy Baldwin and Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qureshi, M.B., Glower, J., Ewert, D.L. et al. A Novel Idea to Improve Cardiac Output of Mechanical Circulatory Support Devices by Optimizing Kinetic Energy Transfer Available in Forward Moving Aortic Blood Flow. Cardiovasc Eng Tech 8, 131–144 (2017). https://doi.org/10.1007/s13239-017-0305-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-017-0305-2

Keywords

Navigation