Skip to main content
Log in

Vascular Smooth Muscle Activation Improves Aortic Compliance with Respect to Mechanical Loading

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

During a pressure rise, the aortic enlargement is followed by an arterial compliance reduction. For elevated pressure levels, vascular smooth muscle (VSM) activation produces an arterial compliance improvement. To better understand this observation, we studied the aortic elasticity function during high pressure states with and without VSM activation. Simultaneous aortic pressure and diameter were measured in conscious dogs. Animals were separated into groups corresponding to different types of VSM activation: PHE group (phenylephrine 5 μg/kg/min, n = 7) and RAS group (renin-angiotensin system stimulation via renal vasoconstriction, n = 7). An arterial biphasic elasticity function was adjusted with a mechanical occlusion intervention. Pressure-diameter loops were compared isobarically between VSM activation and mechanical occlusion. In the PHE group, activation increased aortic distension from 2.6 ± 0.7% to 5.4 ± 1.0% (p < 0.01) and compliance from 0.30 ± 0.07 mm2/mmHg to 0.58 ± 0.11 mm2/mmHg (p < 0.01). Similarly, in the RAS group, aortic distension increased from 4.8 ± 1.5% to 7.4 ± 2.4% (p < 0.05) and compliance from 0.48 ± 0.18 mm2/mmHg to 0.70 ± 0.28 mm2/mmHg (p < 0.05). When VSM activation produces an arterial pressure rise concomitant with an aortic wall contraction, arterial compliance and distension increase with respect to an isobaric mechanical occlusion. The assessment of the aortic geometry helps to explaining the cardiovascular system behavior during acute and chronic high-pressure states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Armentano, R. L., J. Levenson, J. G. Barra, E. I. Fischer, G. J. Breitbart, R. H. Pichel, et al. Assessment of elastin and collagen contribution to aortic elasticity in conscious dogs. Am. J. Physiol. 260(6 Pt 2):H1870–H1877, 1991.

    Google Scholar 

  2. Armentano, R. L., J. G. Barra, J. Levenson, A. Simon, and R. H. Pichel. Arterial wall mechanics in conscious dogs. Assessment of viscous, inertial, and elastic moduli to characterize aortic wall behavior. Circ. Res. 76(3):468–478, 1995.

    Google Scholar 

  3. Armentano, R., J. L. Megnien, A. Simon, F. Bellenfant, J. Barra, and J. Levenson. Effects of hypertension on viscoelasticity of carotid and femoral arteries in humans. Hypertension 26(1):48–54, 1995.

    Google Scholar 

  4. Armentano, R. L., J. G. Barra, D. B. Santana, F. M. Pessana, S. Graf, D. Craiem, et al. Smart damping modulation of carotid wall energetics in human hypertension: effects of angiotensin-converting enzyme inhibition. Hypertension 47(3):384–390, 2006. doi:01.HYP.0000205915.15940.15[pii]10.1161/01.HYP.0000205915.15940.15.

    Article  Google Scholar 

  5. Armentano, R. L., J. G. Barra, F. M. Pessana, D. O. Craiem, S. Graf, D. B. Santana, et al. Smart smooth muscle spring-dampers. Smooth muscle smart filtering helps to more efficiently protect the arterial wall. IEEE Eng. Med. Biol. Mag. 26(1):62–70, 2007.

    Article  Google Scholar 

  6. Atlas, G., and J. K. Li. Brachial artery differential characteristic impedance: Contributions from changes in young’s modulus and diameter. Cardiovasc. Eng. 9(1):11–17, 2009. doi:10.1007/s10558-009-9071-6.

    Article  Google Scholar 

  7. Bank, A. J., and D. R. Kaiser. Smooth muscle relaxation: effects on arterial compliance, distensibility, elastic modulus, and pulse wave velocity. Hypertension 32(2):356–359, 1998.

    Google Scholar 

  8. Bank, A. J., R. F. Wilson, S. H. Kubo, J. E. Holte, T. J. Dresing, and H. Wang. Direct effects of smooth muscle relaxation and contraction on in vivo human brachial artery elastic properties. Circ. Res. 77(5):1008–1016, 1995.

    Google Scholar 

  9. Barra, J. G., R. L. Armentano, J. Levenson, E. I. Fischer, R. H. Pichel, and A. Simon. Assessment of smooth muscle contribution to descending thoracic aortic elastic mechanics in conscious dogs. Circ. Res. 73(6):1040–1050, 1993.

    Google Scholar 

  10. Barra, J. G., J. Levenson, R. L. Armentano, E. I. Cabrera Fischer, R. H. Pichel, and A. Simon. In vivo angiotensin II receptor blockade and converting enzyme inhibition on canine aortic viscoelasticity. Am. J. Physiol. 272(2 Pt 2):H859–H868, 1997.

    Google Scholar 

  11. Bauer, R. D. Rheological approaches of arteries. Biorheology Suppl. 1:159–167, 1984.

    Google Scholar 

  12. Bergel, D. H. The dynamic elastic properties of the arterial wall. J. Physiol. 156(3):458–469, 1961.

    Google Scholar 

  13. Boutouyrie, P., S. Boumaza, P. Challande, P. Lacolley, and S. Laurent. Smooth muscle tone and arterial wall viscosity: an in vivo/in vitro study. Hypertension 32(2):360–364, 1998.

    Google Scholar 

  14. Cholley, B. P., R. M. Lang, C. E. Korcarz, and S. G. Shroff. Smooth muscle relaxation and local hydraulic impedance properties of the aorta. J. Appl. Physiol. 90(6):2427–2438, 2001.

    Google Scholar 

  15. Craiem, D., and R. L. Armentano. A fractional derivative model to describe arterial viscoelasticity. Biorheology 44(4):251–263, 2007.

    Google Scholar 

  16. Dobrin, P. B., and A. A. Rovick. Influence of vascular smooth muscle on contractile mechanics and elasticity of arteries. Am. J. Physiol. 217(6):1644–1651, 1969.

    Google Scholar 

  17. Fischer, E. I., J. Levenson, J. G. Barra, R. L. Armentano, R. H. Pichel, and A. Simon. Preventive effect of chronic converting enzyme inhibition on aortic stiffening induced by renovascular hypertension in conscious dogs. Cardiovasc. Res. 27(6):1039–1044, 1993.

    Article  Google Scholar 

  18. Gow, B. S., and M. G. Taylor. Measurement of viscoelastic properties of arteries in the living dog. Circ. Res. 23(1):111–122, 1968.

    Google Scholar 

  19. Hermeling, E., A. P. Hoeks, M. H. Winkens, J. L. Waltenberger, R. S. Reneman, A. A. Kroon, et al. Noninvasive assessment of arterial stiffness should discriminate between systolic and diastolic pressure ranges. Hypertension 55(1):124–130, 2010.

    Article  Google Scholar 

  20. Li, J. K. The Arterial Circulation: Physical Principles and Clinical Applications. Totowa: Humana Press, 2000.

    Google Scholar 

  21. Li, J. K., Y. Zhu, and P. S. Geipel. Pulse pressure, arterial compliance and wave reflection under differential vasoactive and mechanical loading. Cardiovasc. Eng. 10(4):170–175, 2010. doi:10.1007/s10558-010-9107-y.

    Article  Google Scholar 

  22. Meinders, J. M., and A. P. Hoeks. Simultaneous assessment of diameter and pressure waveforms in the carotid artery. Ultrasound Med. Biol. 30(2):147–154, 2004. doi:10.1016/j.ultrasmedbio.2003.10.014.S0301562903011487[pii].

    Article  Google Scholar 

  23. Nichols, W. W., and M. F. O’Rourke. McDonald’s Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles. London, UK: Eduard Arnold, 1998.

    Google Scholar 

  24. Simon, A. C., M. E. Safar, J. A. Levenson, G. M. London, B. I. Levy, and N. P. Chau. An evaluation of large arteries compliance in man. Am. J. Physiol. 237(5):H550–H554, 1979.

    Google Scholar 

  25. Stefanadis, C., J. Dernellis, C. Vlachopoulos, C. Tsioufis, E. Tsiamis, K. Toutouzas, et al. Aortic function in arterial hypertension determined by pressure-diameter relation: effects of diltiazem. Circulation 96(6):1853–1858, 1997.

    Google Scholar 

  26. Stergiopulos, N., J. J. Meister, and N. Westerhof. Evaluation of methods for estimation of total arterial compliance. Am. J. Physiol. 268(4 Pt 2):H1540–H1548, 1995.

    Google Scholar 

  27. VanBavel, E., P. Siersma, and J. A. Spaan. Elasticity of passive blood vessels: a new concept. Am. J. Physiol. Heart Circ. Physiol. 285(5):H1986–H2000, 2003. doi:10.1152/ajpheart.00248.2003.00248.2003[pii].

    Google Scholar 

  28. Vito, R. P., and S. A. Dixon. Blood vessel constitutive models-1995–2002. Annu. Rev. Biomed. Eng. 5:413–439, 2003. doi:10.1146/annurev.bioeng.5.011303.120719.011303.120719[pii].

    Article  Google Scholar 

  29. Wells, S. M., B. L. Langille, J. M. Lee, and S. L. Adamson. Determinants of mechanical properties in the developing ovine thoracic aorta. Am. J. Physiol. 277(4 Pt 2):H1385–H1391, 1999.

    Google Scholar 

  30. Westerhof, N., and A. Noordergraaf. Arterial viscoelasticity: a generalized model. Effect on input impedance and wave travel in the systematic tree. J. Biomech. 3(3):357–379, 1970.

    Article  Google Scholar 

  31. Zhang, W., Y. Liu, and G. S. Kassab. Viscoelasticity reduces the dynamic stresses and strains in the vessel wall: implications for vessel fatigue. Am. J. Physiol. Heart Circ. Physiol. 293(4):H2355–H2360, 2007. doi:00423.2007[pii]10.1152/ajpheart.00423.2007.

    Article  Google Scholar 

Download references

Acknowledgments

This work was in part subsidized by the project PIP number 112-200901-00734 (CONICET) and project PICTO 31355 (ANPCyT).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Damian Craiem.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Craiem, D., Graf, S., Armentano, R.L. et al. Vascular Smooth Muscle Activation Improves Aortic Compliance with Respect to Mechanical Loading. Cardiovasc Eng Tech 3, 80–87 (2012). https://doi.org/10.1007/s13239-011-0069-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-011-0069-z

Keywords

Navigation