Screening of rhizomes of Rheum emodi Wall. Ex. Meissen for antimutagenic potential employing Ames assay


Rheum emodi Wall. Ex. Meissen is an important food and medicinal plant growing wild in western Himalayas. The current endeavor was undertaken to carry out bioassay guided fractionation and isolation of antimutagenic principle(s) present in the rhizomes of Rheum emodi. The antimutagenicity assay was performed to check the recuperating effect of 80% aqueous methanol extract of rhizomes of R. emodi and its fractions i.e. n-hexane, chloroform, ethyl acetate, n-butanol and water fractions, against 4-nitro-o-phenylenediamine (NPD), sodium azide, and 2AF-induced mutagenicity in TA98 and TA100 strains using the Ames Salmonella his+ reversion assay. The crude 80% aqueous methanol extract and ethyl acetate fraction exhibited strong antimutagenicity. The antimutagenic potential of the extracts and fractions was markedly enhanced when indirect acting mutagen was used in both the tester strains of Salmonella typhimurium. In an effort to identify the molecules responsible for the antimutagenic effect displayed by R. emodi, four anthraquinones i.e. aloe-emodin, chrysophanol, emodin and rhein detected in the ethyl acetate fraction by HPLC analysis were also tested for their antimutagenic potential in both the tester strains. It was found that the anthraquinones in their pure form showed lower antimutagenicity than the mother fraction from which they were isolated. The results point towards a synergistic effect of the principles present in the mother fraction.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. 1.

    Abraham SK. Antigenotoxic effects in mice after the interaction between coffee and dietary constituents. Food Chem Toxicol. 1996;34:15–20.

    CAS  PubMed  Google Scholar 

  2. 2.

    Alekperov U. New antimutagen mixtures in inhibition of genotoxic effects of xenobiotics and aging processes. Abstr Intern Symp Antimut Anticarc. 1998; p. 20.

  3. 3.

    Alothman M, Bhat R, Karim AA. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009;115(3):785–8.

    CAS  Google Scholar 

  4. 4.

    Arvindekar A, More T, Payghan PV, Laddha K, Ghoshal N, Arvindekar A. Evaluation of anti-diabetic and alpha glucosidase inhibitory action of anthraquinones from Rheum emodi. Food Funct. 2015;6:2693–700.

    CAS  PubMed  Google Scholar 

  5. 5.

    Ayaz M, Ullah F, Sadiq A, Ullah F, Ovais M, Ahmed J, Devkota HP. Synergistic interactions of phytochemicals with antimicrobial agents: potential strategy to counteract drug resistance. Chem Biol Interact. 2019;308:294–303.

    CAS  PubMed  Google Scholar 

  6. 6.

    Bala S, Grover IS. Antimutagenicity of some citrus fruits. Mutat Res. 1989;222:141–8.

    CAS  PubMed  Google Scholar 

  7. 7.

    Bridges BA, Bowyer DE, Hansen S, Penn A, Wakabayashi K. Report of the ICPEMC subcommittee, the possible involvement of somatic mutations in the development of atherosclerotic plaques. Mutat Res. 1990;239:143–87.

    Google Scholar 

  8. 8.

    Chauhan NS. Medicinal and aromatic plants of Himachal Pradesh. New Delhi: Indus Publishing Company; 1999.

    Google Scholar 

  9. 9.

    De Flora S, Izzotti A, Randerath K, Randerath E, Bartsch H, Nair J, Balansky R, van Schooten FJ, Degan P, Fronza G, Walsh D, Lewtas J. DNA adducts in chronic degenerative diseases, pathogenetic relevance and implications in preventive medicine. Mutat Res. 1996;366:197–238.

    PubMed  Google Scholar 

  10. 10.

    Dong X, Fu J, Yin X, Cao S, Li X, Lin L, Huyiligeqi NJ. Emodin: a review of its pharmacology, toxicity and pharmacokinetics. Phytother Res. 2016;30(8):1207–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Dubey NK, Kumar R, Tripathi P. Global promotion of herbal medicine, India’s opportunity. Curr Sci. 2004;86:37–41.

    Google Scholar 

  12. 12.

    Edenharder R, Kerkhoff G, Dunkelberg H. Effects of carotene, retinal, riboflavin, tocopherol and vitamins C and K1 on sister-chromatid exchanges induced by 3-amino-1-methyl-5H-pyrido [4,3-b] indole (Trp-P-2) and cyclophosphamide in human lymphocyte cultures. Food Chem Toxicol. 1998;36:897–906.

    CAS  PubMed  Google Scholar 

  13. 13.

    Griffiths P. The role of cranberry juice in the treatment of urinary tract infections. Br J Comm Nurs. 2003;8:557–61.

    Google Scholar 

  14. 14.

    Hamayun M, Afzal S, Khan M. Ethnopharmacology, indigenous collection and preservation techniques of some frequently used medicinal plants of Utror and Gabral, district Swat, Pakistan. Afr J Trad Comp Alter Med. 2005;3:57–73.

    Google Scholar 

  15. 15.

    Hao N, Huang N, Lee H. Structure activity relationships of anthraquinones as inhibitors. Mutat Res. 1995;328:183–91.

    CAS  PubMed  Google Scholar 

  16. 16.

    Harborne JB, Baxter H, Moss GP. Phytochemical dictionary, a handbook of bioactive compounds from plants. London: Taylor and Francis; 1999.

    Google Scholar 

  17. 17.

    Hider RC, Liu Z, Khodr HH. Metal chelation of polyphenols. Methods Enzymol. 2001;335:190–203.

    CAS  PubMed  Google Scholar 

  18. 18.

    Huang HC, Chu SH, Chao-Lee PD. Vasorelaxants from chinese herbs, emodin and scoparone, possess immunosuppressive properties. Eur J Pharmacol. 1991;198:211–3.

    CAS  PubMed  Google Scholar 

  19. 19.

    Izhaki I. The role of fruit traits in determining fruit removal in East Mediterranean ecosystems. In: Levey DJ, Silva WR, Galetti M, editors. Dispersal and frugivory: ecology, evolution and conservation. Wallingford: CAB International Publishing; 2002. p. 161–75.

    Google Scholar 

  20. 20.

    Izzotti A, Orlando M, Gasparini L, Scatolini L, Cartiglia C, Tulimiero C, De Flora S. In vitro inhibition by N-acetylcysteine of oxidative DNA modifications detected by 32P postlabeling. Free Rad Res. 1998;28:165–78.

    CAS  Google Scholar 

  21. 21.

    Koyama M, Kelly TR, Watanabe KA. Novel type of potential anticancer agents derived from chrysophanol and emodin. J Med Chem. 1998;31:283–4.

    Google Scholar 

  22. 22.

    Kumar DR, George VC, Suresh PK, Kumar RA. Cancer-specific chemopreventionand anti-meta static potentials of Rheum emodi rhizome ethyl acetate extracts and identification of active principles through HPLC and GC-MS analysis. Pak J Pharm Sci. 2015;28(1):83–93.

    CAS  PubMed  Google Scholar 

  23. 23.

    Kuroda Y, Hara Y. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat Res. 1999;436:69–97.

    CAS  PubMed  Google Scholar 

  24. 24.

    Lee H, Tsai S. Effect of emodin on cooked food mutagen activation. Food Chem Toxicol. 1991;29:765–70.

    CAS  PubMed  Google Scholar 

  25. 25.

    Leng E, Xiao Y, Mo Z, Li Y, Zhang Y, Deng X, Zhou M, Zhou C, He Z, He J, Xiao L, Li J, Li W. Synergistic effect of phytochemicals on cholesterol metabolism and lipid accumulation in HepG2 cells. BMC Complement Altern Med. 2018;18(1):122.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Li Z, Lin Y, Zhang S, Zhou L, Yan G, Wang Y, Zhang M, Wang M, Lin H, Tong Q, Duan Y, Du G. Emodin regulates neutrophil phenotypes to prevent hypercoagulation and lung carcinogenesis. J Transl Med. 2019;17(1):90.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Malik AM, Bhat A, Fatima B, Ahmed SB, Sidiqui S, Shrivastva P. Rheum emodi as valuable medicinal plant. Int J Gen Med Pharm. 2016;5:35–44.

    Google Scholar 

  28. 28.

    Marczylo T, Arimoto-Kobayashi S, Hayatsu H. Protection against Trp-P-2 mutagenicity by purpurin: mechanism of in vitro antimutagenesis. Mutagen. 2000;15:223–8.

    CAS  Google Scholar 

  29. 29.

    Maron DM, Ames BM. Revised method for Salmonella mutagenicity test. Mutat Res. 1983;113:173–215.

    CAS  PubMed  Google Scholar 

  30. 30.

    Midiwo JO, Rukunga GM. Distribution of anthraquinone pigments in Rumex species of Kenya. Phytochemistry. 1985;24:1390–1.

    CAS  Google Scholar 

  31. 31.

    Mueller SO, Eckert I, Lutz WK, Stopper H. Genotoxicity of the laxative drug components, emodin, aloe-emodin and danthron in mammalian cells, topoisomerase II mediated? Mutat Res. 1996;371:165–73.

    CAS  Google Scholar 

  32. 32.

    Mueller SO, Stopper H, Dekant W. Biotransformation of the anthraquinones emodin and chrysophanol by cytochrome P450 enzymes, bioactivation to genotoxic metabolites. Drug Metab Disp. 1998;26:540–6.

    CAS  Google Scholar 

  33. 33.

    Nautiyal S, Rajan K, Shibasaki R. Environmental conservation vs compensation: explorations from the Uttaranchal Himalaya. Environ Inform Arch. 2004;2:24–35.

    Google Scholar 

  34. 34.

    Rauwald HW. Herbal laxatives, influence of anthronesanthraquinones on energy metabolism and ion transport in a model system. In: Lawson LD, Bauer R, editors. Phytomedicines of Europe, chemistry and biological activity. Washington: American Chemical Society; 1998. p. 97–116.

    Google Scholar 

  35. 35.

    Rhoades DF. Integrated antiherbivore, antidesiccant and ultraviolet screening properties of creosote bush resin. Biochem Syst Ecol. 1997;5:281–90.

    Google Scholar 

  36. 36.

    Roberts WG, Gordon MH. Determination of the total antioxidant activity of fruits and vegetables by a liposome assay. J Agric Food Chem. 2003;51:1486–93.

    CAS  PubMed  Google Scholar 

  37. 37.

    Shetty K, Wahlqvist ML. A model for the role of prolinelinked pentose phosphate pathway in phenolic phytochemical biosynthesis and mechanism of action for human health and environmental applications. Asia Pac J Clin Nutr. 2004;13:1–24.

    CAS  PubMed  Google Scholar 

  38. 38.

    Stich HF, Rosin MP, Bryson L. Inhibition of mutagenicity of a model nitrosation reaction by naturally occurring phenolics, coffee and tea. Mutat Res. 1982;95:119–28.

    CAS  PubMed  Google Scholar 

  39. 39.

    Su HY, Cheng SH, Chen CC, Lee H. Emodin inhibits the mutagenicity and DNA adducts induced by 1-nitropyrene. Mutat Res. 1995;329:205–12.

    CAS  PubMed  Google Scholar 

  40. 40.

    Thomas CE, Mclean LR, Parker PA, Ohlweiler DF. Ascorbate and phenolic antioxidant interactions in prevention of liposomal oxidation. Lipids. 1992;27:543–50.

    CAS  PubMed  Google Scholar 

  41. 41.

    Tikkanen L, Matsushima T, Natori S. Mutagenicity of anthraquinones in the Salmonella preincubation test. Mutat Res. 1983;116:297–304.

    CAS  PubMed  Google Scholar 

  42. 42.

    Weisburger JH, Hosey JR, Larios E, Pittman B, Zang E, Hara Y, Kuts-Cheraux G. Investigation of commercial mitolife as an antioxidant and antimutagen. Nutrition. 2001;17:322–5.

    CAS  PubMed  Google Scholar 

  43. 43.

    Wink M, Schimmer O. Modes of action of defensive secondary metabolites. In: Wink M, editor. Functions of plant secondary metabolites and their exploitation in biotechnology. Sheffield: Sheffield Academic Press; 1996. p. 17–33.

    Google Scholar 

  44. 44.

    Yen CC, Chen HH, Duh PD. Extraction and identification of an antioxidative component from Jue Ming Zi (Cassia tora L.). J Agric Food Chem. 1998;46:820–4.

    CAS  Google Scholar 

  45. 45.

    Yen GC, Duh PD, Chuang DY. Antioxidant activity of anthraquinones and anthrone. Food Chem. 2000;70:437–41.

    CAS  Google Scholar 

  46. 46.

    Yuan Z, Gao R. Anti-oxidant actions of anthraquinonlines contained in Rheum. Pharm Pharmacol Lett. 1997;7:9–12.

    CAS  Google Scholar 

  47. 47.

    Zhou RS, Wang XW, Sun QF, Ye ZJ, Liu JW, Zhou DH, Tang Y. Anticancer effects of emodin on HepG2 Cell: evidence from bioinformatic analysis. Biomed Res Int. 2019.

    Article  PubMed  PubMed Central  Google Scholar 

Download references


The authors are grateful to CSIR, New Delhi for financial assistance provided under Research Project Grant during the course of this work.

Author information




Aviansh Nagpal conceived the study, Saroj Arora and Bikram Singh guided the experimental work, Anjana Bhatia performed experiments, analyzed the data and wrote the manuscript. All authors have approved the final version of manuscript.

Corresponding author

Correspondence to Anjana Bhatia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bhatia, A., Arora, S., Nagpal, A. et al. Screening of rhizomes of Rheum emodi Wall. Ex. Meissen for antimutagenic potential employing Ames assay. Nucleus 63, 167–177 (2020).

Download citation


  • Antimutagenicity
  • 2-Aminofluorene
  • Anthraquinones
  • Aloe-emodin
  • Chrysophanol
  • Emodin
  • Rhein
  • Rheum emodi
  • Salmonella typhimurium
  • Ames assay