Use of selenium as micronutrients and for future anticancer drug: a review

Abstract

The inherent duality of selenium can be the stepping stone to generate selenium based front line chemotherapeutic drug against ever evolving disease landscape of cancer. Not only as a therapeutic agent, but also in supportive care this essential micronutrient may be a good supplement to balance redox homeostasis and boost up patients immunity. Many in vitro, in vivo and clinical studies have generated a lot of useful information about anticancer properties of this trace element, which can be used as backbone in these aspects. The knowledge about speciation, distribution and compartmentalization of selenium metabolites, their pharmacokinetics, regulation of selenogenome and selenoproteome function, genomic variants and epigenetic effects are to be integrated to achieve the novel target. Advancement of bioinformatics and new technologies can be very much helpful in this regard.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Bartolini D, Sancineto L, Fabro de Bem A, Tew KD, Santi C, Radi R, Toquato P, Galli F. Selenocompounds in cancer therapy: an overview. Adv Cancer Res. 2017;136:259–302.

    CAS  PubMed  Google Scholar 

  2. 2.

    Bermano G, Pagmantidis V, Holloway N, Kadri S, Mowat NA, Shiel RS, Arthur JR, Mathers JC, Daly AK, Broom J, Hesketh JE. Evidence that a polymorphism within the 3’UTR of glutathione peroxidase 4 is functional and is associated with susceptibility to colorectal cancer. Genes Nutr. 2007;2:225–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Bhattacharjee A, Basu A, Ghosh P, Biswas J, Bhattacharya S. Protective effect of Selenium nanoparticle against cyclophosphamide induced hepatotoxicity and genotoxicity in Swiss albino mice. J Biomater Appl. 2014;29:303–17.

    CAS  PubMed  Google Scholar 

  4. 4.

    Bhattacharjee A, Basu A, Biswas J, Bhattacharya S. Nano-Se attenuates cyclophosphamide-induced pulmonary injury through modulation of oxidative stress and DNA damage in Swiss albino mice. Mol Cell Biochem. 2015;405:243–56.

    CAS  PubMed  Google Scholar 

  5. 5.

    Bhattacharjee A, Basu A, Biswas J, Sen T, Bhattacharya S. Chemoprotective and chemosensitizing properties of selenium nanoparticle (Nano-Se) during adjuvant therapy with cyclophosphamide in tumor-bearing mice. Mol Cell Biochem. 2016. https://doi.org/10.1007/s11010-016-2839-2.

    Article  PubMed  Google Scholar 

  6. 6.

    Bhattacharjee A, Basu A, Biswas J, Sen T, Bhattacharya S. Chemoprotective and chemosensitizing properties of selenium nanoparticle (Nano-Se) during adjuvant therapy with cyclophosphamide in tumor-bearing mice. Mol Cell Biochem. 2017;424:13–33.

    CAS  PubMed  Google Scholar 

  7. 7.

    Brodin O, Eksborg S, Wallenberg M, Asker-Hagelberg C, Larsen EH, Mohlkert D, Lenneby-Helleday C, Jacobsson H, Linder S, Misra S, Björnstedt M. Pharmacokinetics and toxicity of sodium selenite in the treatment of patients with carcinoma in a Phase I clinical trial: the SECAR study. Nutrients. 2015;7:4978–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Büntzel J, Glatzel M, Bruns F, Kisters K, Micke O, Mücke R. Selenium supplementation in head and neck surgery. Trace Elem Electrolytes. 2008;25:221.

    Google Scholar 

  9. 9.

    Burk RF, Hill KE. Regulation of selenium metabolism and transport. Annu Rev Nutr. 2015;35:109–34.

    CAS  PubMed  Google Scholar 

  10. 10.

    Burk RF, Norsworthy BK, Hill KE, Motley AK, Byrne DW. Effects of chemical form of selenium on plasma biomarkers in a high-dose human supplementation trial. Cancer Epidemiol Biomark Prev. 2006;15:804–10.

    CAS  Google Scholar 

  11. 11.

    Cavalli S, Cardellicchio N. Direct determination of seleno-amino acids in biological tissues by anion-exchange separation and electrochemical detection. J Chromatogr A. 1995;706:429–36.

    CAS  PubMed  Google Scholar 

  12. 12.

    Chakraborty P, Roy SS, Sk UH, Bhattacharya S. Amelioration of cisplatin-induced nephrotoxicity in mice by oral administration of diphenylmethyl selenocyanate. Free Radic Res. 2011;45:177–87.

    CAS  PubMed  Google Scholar 

  13. 13.

    Chakraborty P, Roy SS, Basu A, Bhattacharya S. Sensitization of cancer cells to cyclophosphamide therapy by an organoselenium compound through ROS-mediated apoptosis. Biomed Pharmacother. 2016;84:1992–9.

    CAS  PubMed  Google Scholar 

  14. 14.

    Chen YC, Prabhu KS, Das A, Mastro AM. Dietary selenium supplementation modifies breast tumor growth and metastasis. Int J Cancer. 2013;133:2054–64.

    CAS  PubMed  Google Scholar 

  15. 15.

    Chen YC, Prabhu KS, Mastro AM. Is selenium a potential treatment for cancer metastasis? Nutrients. 2013;5:1149–68.

    PubMed  PubMed Central  Google Scholar 

  16. 16.

    Conrad M, Moreno SG, Sinowatz F, Ursini F, Kolle S, Roveri A, Brielmeier M, Wurst W, Maiorino M, Bornkamm GW. The nuclear form of phospholipid hydroperoxide glutathione peroxidase is a protein thiol peroxidase contributing to sperm chromatin stability. Mol Cell Biol. 2005;25:7637–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Das RK, Bhattacharya S. Inhibition of DMBA-croton oil two-stage mouse skin carcinogenesis by diphenylmethyl selenocyanate through modulation of cutaneous oxidative stress and inhibition of nitric oxide production. Asian Pac J Cancer Prev. 2004;5:151–9.

    PubMed  Google Scholar 

  18. 18.

    Das RK, Hossain SK, Bhattacharya S. Diphenylmethyl selenocyanate inhibits DMBA-croton oil induced two-stage mouse skin carcinogenesis by inducing apoptosis and inhibiting cutaneous cell proliferation. Cancer Lett. 2005;230:90–101.

    CAS  PubMed  Google Scholar 

  19. 19.

    Das RK, Banerjee S, Bhattacharya S. Amelioration of benzo (a) pyrene-induced lung carcinogenesis in strain A mice by diphenylmethyl selenocyanate. Exp Toxicol Pathol. 2007;58:351–60.

    CAS  PubMed  Google Scholar 

  20. 20.

    Das RK, Hossain SU, Bhattacharya S. Protective effect of diphenylmethyl selenocyanate against CCl4-induced hepatic injury. J Appl Toxicol. 2007;27:527–37.

    CAS  PubMed  Google Scholar 

  21. 21.

    Das JK, Sarkar S, Hossain SU, Chakraborty P, Das RK, Bhattacharya S. Diphenylmethyl selenocyanate attenuates malachite green induced oxidative injury through antioxidation & inhibition of DNA damage in mice. Indian J Med Res. 2013;137:1163–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Davy T, Castellano S. The genomics of selenium: its past, present and future. Biochim Biophys Acta. 2018. https://doi.org/10.1016/j.bbagen.2018.05.020.

    Article  Google Scholar 

  23. 23.

    Dennert G, Horneber M. Selenium for alleviating the side effects of chemotherapy, radiotherapy and surgery in cancer patients. Cochrane Database Syst Rev. 2006;3:CD005037.

    Google Scholar 

  24. 24.

    Dennert G, Zwahlen M, Brinkman M, Vinceti M, Zeegers MP, Horneber M. Selenium for preventing cancer. Cochrane Database Syst Rev. 2011;5:CD005195.

    Google Scholar 

  25. 25.

    Dutilleul C, Jourdain A, Bourguignon J, Hugouvieux V. The Arabidopsis putative selenium-binding protein family: expression study and characterization of SBP1 as a potential new player in cadmium detoxification processes. Plant Physiol. 2008;147:239–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ekoue DN, Zaichick S, Valyi-Nagy K, Picklo M, Lacher C, Hoskins K, Warso MA, Bonini MG, Diamond AM. Selenium levels in human breast carcinoma tissue are associated with a common polymorphism in the gene for SELENOP (Selenoprotein P). J Trace Elem Med Biol. 2017;39:227–33.

    CAS  PubMed  Google Scholar 

  27. 27.

    Encinar JR, Schaumlöffel D, Ogra Y, Lobinski R. Determination of selenomethionine and selenocysteine in human serum using speciated isotope dilution-capillary HPLC-inductively coupled plasma collision cell mass spectrometry. Anal Chem. 2004;76:6635–42.

    PubMed  Google Scholar 

  28. 28.

    Ferguson LR, Karunasinghe N, Zhu S, Wang AH. Selenium and its’ role in the maintenance of genomic stability. Mutat Res. 2012;733:100–10.

    CAS  PubMed  Google Scholar 

  29. 29.

    Fernandes AP, Gandin V. Selenium compounds as therapeutic agents in cancer. Biochim Biophys Acta. 2015;1850:1642–60.

    CAS  PubMed  Google Scholar 

  30. 30.

    Fernandes J, Hu X, Ryan Smith M, Go YM, Jones DP. Selenium at the redox interface of the genome, metabolome and exposome. Free Radic Biol Med. 2018. https://doi.org/10.1016/j.freeradbiomed.2018.06.002.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Font M, Romano B, González-Peñas E, Sanmartín C, Plano D, Palop JA. Methylselenol release as a cytotoxic tool: a study of the mechanism of the activity achieved by two series of methylselenocarbamate derivatives. Metallomics. 2018;10:1128–40.

    CAS  PubMed  Google Scholar 

  32. 32.

    Fraunholz I, Eberlein K, Schopohl B, Böttcher HD, Rödel C. Selenium levels during the course of radiotherapy. No influence of irradiation on blood selenium concentration. Strahlenther Onkol. 2008;184:411–5.

    PubMed  Google Scholar 

  33. 33.

    Gandin V, Khalkar P, Braude J, Fernandes AP. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic Biol Med. 2018. https://doi.org/10.1016/j.freeradbiomed.2018.05.001.

    Article  PubMed  Google Scholar 

  34. 34.

    Ganther HE, Lawrence RJ. Chemical transformations of selenium in living organisms. Improved forms of selenium for cancer prevention. Tetrahedron. 1997;53:12299–310.

    CAS  Google Scholar 

  35. 35.

    Ghosh S, Das RK, Sengupta A, Bhattacharya S. Inhibition of Azoxymethane induced aberrant crypt foci in rat by diphenylmethyl selenocyanate through downregulation of COX-2 and modulation of glutathione-S-transferase and lipid peroxidation. Biol Trace Elem Res. 2005;105:171–86.

    CAS  PubMed  Google Scholar 

  36. 36.

    Ghosh P, Roy SS, Chakraborty P, Ghosh S, Bhattacharya S. Effects of organoselenium compound 2-(5-selenocyanato-pentyl)-benzo[de]isoquinoline 1,3-dione on cisplatin induced nephrotoxicity and genotoxicity: an investigation of the influence of the compound on oxidative stress and antioxidant enzyme system. Biometals. 2013;26:61–73.

    CAS  PubMed  Google Scholar 

  37. 37.

    Ghosh P, Singha Roy S, Basu A, Bhattacharjee A, Bhattacharya S. Sensitization of cisplatin therapy by a naphthalimide based organoselenium compound through modulation of antioxidant enzymes and p53 mediated apoptosis. Free Radic Res. 2015;49:453–71.

    CAS  PubMed  Google Scholar 

  38. 38.

    Gilbert-López B, Dernovics M, Moreno-González D, Molina-Díaz A, García-Reyes JF. Detection of over 100 selenium metabolites in selenized yeast by liquid chromatography electrospray time-of-flight mass spectrometry. J Chromatogr B Anal Technol Biomed Life Sci. 2017;1060:84–90.

    Google Scholar 

  39. 39.

    Guo CH, Hsia S, Chen PC. Distribution of selenium and oxidative stress in breast tumor-bearing mice. Nutrients. 2013;5:594–607.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Hatfield DL, Yoo MH, Carlson BA, Gladyshev VN. Selenoproteins that function in cancer prevention and promotion. Biochem Biophys Acta. 2009;1790:1541–5.

    CAS  PubMed  Google Scholar 

  41. 41.

    Hoefig CS, Renko K, Köhrle J, Birringer M, Schomburg L. Comparison of different selenocompounds with respect to nutritional value vs. toxicity using liver cells in culture. J Nutr Biochem. 2011;22:945–55.

    CAS  PubMed  Google Scholar 

  42. 42.

    Hoffmann PR. Selenium and asthma: a complex relationship. Allergy. 2008;63:854–60.

    CAS  PubMed  Google Scholar 

  43. 43.

    Hoffmann PR, Berry MJ. The influence of selenium on immune responses. Mol Nutr Food Res. 2008;52:1273–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Hosnedlova B, Kepinska M, Skalickova S, Fernandez C, Ruttkay-Nedecky B, Peng Q, Baron M, Melcova M, Opatrilova R, Zidkova J, Bjørklund G, Sochor J, Kizek R. Nano-selenium and its nanomedicine applications: a critical review. Int J Nanomed. 2018;13:2107–28.

    CAS  Google Scholar 

  45. 45.

    Hossain SU, Bhattacharya S. Prevention of cadmium induced lipid peroxidation, depletion of some antioxidative enzymes and glutathione by a series of novel organoselenocyanates. Environ Toxicol Pharmacol. 2006;22:298–308.

    Google Scholar 

  46. 46.

    Hossain SU, Sengupta S, Bhattacharya S. Synthesis and evaluation of antioxidative properties of a series of organoselenium compounds. Bioorg Med Chem. 2005;13:5750–8.

    CAS  PubMed  Google Scholar 

  47. 47.

    Hossain SU, Sharma AK, Ghosh S, Bhattacharya S. Synthesis and biological evaluation of novel spiro 6-methoxytetralin-1,3’-pyrrolidine based organoselenocyanates against cadmium-induced oxidative and hepatic damage in mice. Eur J Med Chem. 2010;45:3265–73.

    Google Scholar 

  48. 48.

    Huang C, Hu B, He M, Duan J. Organic and inorganic selenium speciation in environmental and biological samples by nanometer-sized materials packed dual-column separation/preconcentration on-line coupled with ICP-MS. J Mass Spectrom JMS. 2008;43:336–45.

    CAS  PubMed  Google Scholar 

  49. 49.

    Imai H, Hakkaku N, Iwamoto R, Suzuki J, Suzuki T, Tajima Y, Konishi K, Minami S, Ichinose S, Ishizaka K, Shioda S, Arata S, Nishimura M, Naito S, Nakagawa Y. Depletion of selenoprotein GPx4 in spermatocytes causes male infertility in mice. J Biol Chem. 2009;284:32522–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Ip C. Lessons from basic research in selenium and cancer prevention. J Nutr. 1998;128:1845–54.

    CAS  PubMed  Google Scholar 

  51. 51.

    Johnson WD, Morrissey RL, Kapetanovic I, Crowell JA, McCormick DL. Subchronic oral toxicity studies of Se-methylselenocysteine, an organoselenium compound for breast cancer prevention. Food Chem Toxicol. 2008;46:1068–78.

    CAS  PubMed  Google Scholar 

  52. 52.

    Kamer B, Wąsowicz W, Pyziak K, Kamer-Bartosińska A, Gromadzińska J, Pasowska R. Role of selenium and zinc in the pathogenesis of food allergy in infants and young children. Arch Med Sci. 2012;8:1081–3.

    Google Scholar 

  53. 53.

    Karunasinghe N, Han DY, Zhu S, Yu J, Lange K, Duan H, Medhora R, Singh N, Kan J, Alzaher W, Chen B, Ko S, Triggs CM, Ferguson LR. Serum selenium and single-nucleotide polymorphisms in genes for selenoproteins: relationship to markers of oxidative stress in men from Auckland, New Zealand. Genes Nutr. 2012;7:179–90.

    CAS  PubMed  Google Scholar 

  54. 54.

    Köhrle J, Schweizer U, Schomburg L. Selenium transport in mammals: selenoprotein P and its receptors. In: Hatfield D, Berry M, Gladyshev V, editors. Selenium. New York: Springer; 2011. https://doi.org/10.1007/978-1-4614-1025-6_16.

    Google Scholar 

  55. 55.

    Kotrebai M, Birringer M, Tyson JF, Block E, Uden PC. Selenium speciation in enriched and natural samples by HPLC-ICP-MS and HPLC-ESI-MS with perfluorinated carboxylic acid ion-pairing agents. Analyst. 2000;125:71–8.

    CAS  PubMed  Google Scholar 

  56. 56.

    Kryukov GV, Castellano S, Novoselov SV, Lobanov AV, Zehtab O, Guigó R, Gladyshev VN. Characterization of mammalian selenoproteomes. Science. 2003;300:1439–43.

    CAS  PubMed  Google Scholar 

  57. 57.

    Labunskyy VM, Hatfield DL, Gladyshev VN. Selenoproteins: molecular pathways and physiological roles. Physiol Rev. 2014;94:739–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Lennicke C, Rahn J, Kipp AP, Dojčinović BP, Müller AS, Wessjohann LA, Lichtenfels R, Seliger B. Individual effects of different selenocompounds on the hepatic proteome and energy metabolism of mice. Biochim Biophys Acta. 2017;1861:3323–34.

    CAS  Google Scholar 

  59. 59.

    Letavayová L, Vlcková V, Brozmanová J. Selenium: from cancer prevention to DNA damage. Toxicology. 2006;227:1–14.

    PubMed  Google Scholar 

  60. 60.

    Li W, Talukder M, Sun XT, Zhang C, Li XN, Ge J, Li JL. Selenoprotein W as a molecular target of d-amino acid oxidase is regulated by d-amino acid in chicken neurons. Metallomics. 2018;10:751–8.

    CAS  PubMed  Google Scholar 

  61. 61.

    Liang H, Yoo SE, Na R, Walter CA, Richardson A, Ran Q. Short form glutathione peroxidase 4 is the essential isoform required for survival and somatic mitochondrial functions. J Biol Chem. 2009;284:30836–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Liu W, Li X, Wong YS, Zheng W, Zhang Y, Cao W, Chen T. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano. 2012;6(8):6578–91.

    CAS  PubMed  Google Scholar 

  63. 63.

    Lu J, Holmgren A. Selenoproteins. J Biol Chem. 2009;284:723–30.

    CAS  PubMed  Google Scholar 

  64. 64.

    Marshall JR, Ip C, Romano K, Fetterly G, Fakih M, Jovanovic B, Perloff M, Crowell J, Davis W, French-Christy R, Dew A, Coomes M, Bergan R. Methyl selenocysteine: single-dose pharmacokinetics in men. Cancer Prev Res. 2011;4:1938–44.

    CAS  Google Scholar 

  65. 65.

    Méplan C, Hughes DJ, Pardini B, Naccarati A, Soucek P, Vodickova L, Hlavatá I, Vrána D, Vodicka P, Hesketh JE. Genetic variants in selenoprotein genes increase risk of colorectal cancer. Carcinogenesis. 2010;31:1074–83.

    PubMed  Google Scholar 

  66. 66.

    Micke O, Bruns F, Mücke R, Schäfer U, Glatzel M, DeVries AF, Schönekaes K, Kisters K, Büntzel J. Seleniumin the treatment of radiation-associated secondary lymphedema. Int J Radiat Oncol Biol Phys. 2003;56:40–9.

    CAS  PubMed  Google Scholar 

  67. 67.

    Micke O, Büntzel J, Bruns F, Glatzel M, Hunger R, Kisters K, Mücke R. Clinical elementology in oncology: experiences and proposals from Germany. Trace Elem Electrolytes. 2008;5:221.

    Google Scholar 

  68. 68.

    Misra S, Kwong RW, Niyogi S. Transport of selenium across the plasma membrane of primary hepatocytes and enterocytes of rainbow trout. J Exp Biol. 2012;215:1491–501.

    CAS  PubMed  Google Scholar 

  69. 69.

    Misra S, Boylan M, Selvam A, Spallholz JE, Björnstedt M. Redox-active selenium compounds-from toxicity and cell death to cancer treatment. Nutrients. 2015;7:3536–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70.

    Murdolo G, Bartolini D, Tortoioli C, Piroddi M, Torquato P, Galli F. Selenium and cancer stem cells. Adv Cancer Res. 2017;136:235–57.

    CAS  PubMed  Google Scholar 

  71. 71.

    Papp LV, Lu J, Holmgren A, Khanna KK. From selenium to selenoproteins: synthesis, identity, and their role in human health. Antioxid Redox Signal. 2007;9:775–806.

    CAS  PubMed  Google Scholar 

  72. 72.

    Park K, Rimm E, Siscovick D, Spiegelman D, Morris JS, Mozaffarian D. Demographic and lifestyle factors and selenium levels in men and women in the U.S. Nutr Res Pract. 2011;5:357–64.

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Patra AR, Roy SS, Basu A, Bhuniya A, Bhattacharjee A, Hajra S, Sk UH, Baral R, Bhattacharya S. Design and synthesis of coumarin-based organoselenium as a new hit for myeloprotection and synergistic therapeutic efficacy in adjuvant therapy. Sci Rep. 2018;8:2194.

    PubMed  PubMed Central  Google Scholar 

  74. 74.

    Puglisi R, Maccari I, Pipolo S, Conrad M, Mangia F, Boitani C. The nuclear form of glutathione peroxidase 4 is associated with sperm nuclear matrix and is required for proper paternal chromatin decondensation at fertilization. J Cell Physiol. 2012;227:1420–7.

    CAS  PubMed  Google Scholar 

  75. 75.

    Puspitasari IM, Abdulah R, Yamazaki C, Kameo S, Nakano T, Koyama H. Updates on clinical studies of selenium supplementation in radiotherapy. Radiat Oncol. 2014. https://doi.org/10.1186/1748-717X-9-125.

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Ravn-Haren G, Olsen A, Tjonneland A, Dragsted LO, Nexo BA, Wallin H, Overvad K, Raaschou-Nielsen O, Vogel U. Associations between GPX1 Pro198Leu polymorphism, erythrocyte GPX activity, alcohol consumption and breast cancer risk in a prospective cohort study. Carcinogenesis. 2006;27:820–5.

    CAS  PubMed  Google Scholar 

  77. 77.

    Rayman MP. Selenium and human health. Lancet. 2012;379:1256–68.

    CAS  PubMed  Google Scholar 

  78. 78.

    Roman M, Jitaru P, Barbante C. Selenium biochemistry and its role for human health. Metallomics. 2016;6:25–54.

    Google Scholar 

  79. 79.

    Rosen BP, Liu Z. Transport pathways for arsenic and selenium: a minireview. Environ Int. 2009;35:512–7.

    CAS  PubMed  Google Scholar 

  80. 80.

    Roy SS, Ghosh P, Sk UH, Chakraborty P, Biswas J, Mandal S, Bhattacharjee A, Bhattacharya S. Naphthalimide based novel organoselenocyanates: finding less toxic forms of selenium that would retain protective efficacy. Bioorg Med Chem Lett. 2010;20:6951–6.

    PubMed  Google Scholar 

  81. 81.

    Roy SS, Chakraborty P, Ghosh P, Ghosh S, Biswas J, Bhattacharya S. Influence of novel naphthalimide-based organoselenium on genotoxicity induced by an alkylating agent: the role of reactive oxygen species and selenoenzymes. Redox Rep. 2012;17:157–66.

    CAS  PubMed  Google Scholar 

  82. 82.

    Roy SS, Chakraborty P, Biswas J, Bhattacharya S. 2-[5-Selenocyanato-pentyl]-6-amino-benzo[de]isoquinoline-1,3-dione inhibits angiogenesis, induces p53 dependent mitochondrial apoptosis and enhances therapeutic efficacy of cyclophosphamide. Biochimie. 2014;105:137–48.

    CAS  PubMed  Google Scholar 

  83. 83.

    Roy SS, Chakraborty P, Bhattacharya S. Intervention in cyclophosphamide induced oxidative stress and DNA damage by a flavonyl-thiazolidinedione based organoselenocyanate and evaluation of its efficacy during adjuvant therapy in tumor bearing mice. Eur J Med Chem. 2014;73:195–209.

    CAS  PubMed  Google Scholar 

  84. 84.

    Schild F, Kieffer-Jaquinod S, Palencia A, Cobessi D, Sarret G, Zubieta C, Jourdain A, Dumas R, Forge V, Testemale D, Bourguignon J, Hugouvieux V. Biochemical and biophysical characterization of the selenium-binding and reducing site in Arabidopsis thaliana homologue to mammals selenium-binding protein 1. J Biol Chem. 2014;289:31765–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Schomburg L, Köhrle J. On the importance of selenium and iodine metabolism for thyroid hormone biosynthesis and human health. Mol Nutr Food Res. 2008;52:1235–46.

    CAS  PubMed  Google Scholar 

  86. 86.

    Sengupta A, Carlson BA, Weaver JA, Novoselov SV, Fomenko DE, Gladyshev VN, Hatfield DL. A functional link between housekeeping selenoproteins and phase II enzymes. Biochem J. 2008;413:151–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. 87.

    Short SP, Williams CS. Selenoproteins in tumorigenesis and cancer progression. Adv Cancer Res. 2017;136:49–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88.

    Song M, Kumaran MN, Gounder M, Gibbon DG, Nieves-Neira W, Vaidya A, Hellmann M, Kane MP, Buckley B, Shih W, Caffrey PB, Frenkel GD, Rodriguez-Rodriguez L. Phase I trial of selenium plus chemotherapy in gynecologic cancers. Gynecol Oncol. 2018. https://doi.org/10.1016/j.ygyno.2018.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  89. 89.

    Sonkaria S, Ahn SH, Khare V. Nanotechnology and its impact on food and nutrition: a review. Recent Pat Food Nutr Agric. 2012;4(1):8–18.

    CAS  PubMed  Google Scholar 

  90. 90.

    Speckmann B, Grune T. Epigenetic effects of selenium and their implications for health. Epigenetics. 2015;10:179–90.

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Speckmann B, Schulz S, Hiller F, Hesse D, Schumacher F, Kleuser B, Geisel J, Obeid R, Grune T, Kipp AP. Selenium increases hepatic DNA methylation and modulates one-carbon metabolism in the liver of mice. J Nutr Biochem. 2017;48:112–9.

    CAS  PubMed  Google Scholar 

  92. 92.

    Sunde RA, Raines AM. Selenium regulation of the selenoprotein and nonselenoprotein transcriptomes in rodents. Adv Nutr. 2011;2:138–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93.

    Thiry C, Ruttens A, Pussemier L, Schneider YJ. An in vitro investigation of species-dependent intestinal transport of selenium and the impact of this process on selenium bioavailability. Br J Nutr. 2013;109:2126–34.

    CAS  PubMed  Google Scholar 

  94. 94.

    Thomson CD, Wickens K, Miller J, Ingham T, Lampshire P, Epton MJ, Town GI, Pattemore P, Crane J. Selenium status and allergic disease in a cohort of New Zealand children. Clin Exp Allergy. 2012;42:560–7.

    CAS  PubMed  Google Scholar 

  95. 95.

    Wallenberg M, Misra S, Björnstedt M. Selenium cytotoxicity in cancer. Basic Clinical Pharmacol Toxicol. 2014;114:377–86.

    CAS  Google Scholar 

  96. 96.

    Weekley CM, Aitken JB, Finney L, Vogt S, Witting PK, Harris HH. Selenium metabolism in cancer cells: the combined application of XAS and XFM techniques to the problem of selenium speciation in biological systems. Nutrients. 2013;5:1734–56.

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97.

    What are EPA’s drinking water regulations for selenium?. https://safewater.zendesk.com/hc/en-us/articles/211401298-4-What-are-EPA-s-drinking-water-regulations-for-selenium.

  98. 98.

    Wrobel JK, Power R, Toborek M. Biological activity of selenium: revisited. IUBMB Life. 2016;68:97–105.

    CAS  PubMed  Google Scholar 

  99. 99.

    Wrobel JK, Wolff G, Xiao R, Power RF, Toborek M. Dietary selenium supplementation modulates growth of brain metastatic tumors and changes the expression of adhesion molecules in brain microvessels. Biol Trace Elem Res. 2016;172:395–407.

    CAS  PubMed  Google Scholar 

  100. 100.

    Yan L, DeMars LC. Dietary supplementation with methylseleninic acid, but not selenomethionine, reduces spontaneous metastasis of Lewis lung carcinoma in mice. Int J Cancer. 2012;131:1260–6.

    CAS  PubMed  Google Scholar 

  101. 101.

    Yang F, Tang Q, Zhong X, Bai Y, Chen T, Zhang Y, Li Y, Zheng W. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. Int J Nanomed. 2012;7:835–44.

    CAS  Google Scholar 

  102. 102.

    Yang Y, Xie Q, Zhao Z, He L, Chan L, Liu Y, Chen Y, Bai M, Pan T, Qu Y, Ling L, Chen T. Functionalized selenium nanosystem as radiation sensitizer of 125I seeds for precise cancer therapy. ACS Appl Mater Interfaces. 2017;9(31):25857–69.

    CAS  PubMed  Google Scholar 

  103. 103.

    Yazdi MH, Mahdavi M, Setayesh N, Esfandyar M, Shahverdi AR. Selenium nanoparticle-enriched Lactobacillus brevis causes more efficient immune responses in vivo and reduces the liver metastasis in metastatic form of mouse breast cancer. Daru. 2013;21:33.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Zakharia Y, Bhattacharya A, Rustum YM. Selenium targets resistance biomarkers enhancing efficacy while reducing toxicity of anti-cancer drugs: preclinical and clinical development. Oncotarget. 2018;9:10765–83.

    PubMed  PubMed Central  Google Scholar 

  105. 105.

    Zeng H, Combs GF Jr. Selenium as an anticancer nutrient: roles in cell proliferation and tumor cell invasion. J Nutr Biochem. 2008;19:1–7.

    PubMed  Google Scholar 

Download references

Acknowledgements

ARP thanks University Grants Commission (UGC), New Delhi, India (18-12/2011(ii) EU-V) and SH acknowledges Science and Engineering Research Board (SERB), Department of Science & Technology (DST), New Delhi, India (SB/YS/LS-121/2014) for their respective research grants. Authors also thank Director, Chittaranjan National Cancer Institute, Kolkata for providing infrastructural facilities.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sudin Bhattacharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Sudin Bhattacharya: Retired.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Patra, A.R., Hajra, S., Baral, R. et al. Use of selenium as micronutrients and for future anticancer drug: a review. Nucleus 63, 107–118 (2020). https://doi.org/10.1007/s13237-019-00306-y

Download citation

Keywords

  • Cancer
  • Chemotherapy
  • Immunity
  • Omics
  • Redox biology
  • Selenium