Skip to main content
Log in

Cytogenetics and genetic introgression from wild relatives in soybean

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Cultivated soybean, wild soybean, and 23 perennial Glycine species contain 2n = 40 chromosomes. Accessions of G. hirticaulis and G. tabacina have diploid (2n = 40) and tetraploid (2n = 80) chromosome numbers. In contrast, G. tomentella includes accessions with four cytotypes (2n = 38, 40, 78, or 80). Meiosis of G. max and G. soja F1 is normal and gene exchange is easy. Occasionally, accessions of the two species differ by chromosome structural changes (reciprocal translocation/paracentric inversion). The segregating populations inherit undesirable traits such as vining, lodging susceptibility, lack of complete leaf abscission, seed shattering, and small black coated seeds because of genetic drag. The introgression of useful genes from 26 wild perennial Glycine species to soybean has been restricted because of crossability barriers and requires extensive hybridization, immature seed rescue, and cytogenetic manipulations. This review paper discusses cytogenetics, gene pools of the soybean and the production of fertile G. max plants using 78-chromosome G. tomentella (PI 441001) as a paternal and maternal parent in crosses with G. max cv. ‘Dwight’ (2n = 40). Thus, reporting breaking of the intersubgeneric crossability barriers for the first time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

(From Singh et al. [51]; with permission)

Fig. 3

(From Singh et al. [51]; with permission)

Fig. 4

(From Singh et al. [51]; with permission)

Fig. 5

(From Singh and Hymowitz [50]; with permission)

Fig. 6

(From Singh and Hymowitz [50]; with permission)

Fig. 7
Fig. 8

(From Singh and Nelson [53]; with permission) (color figure online)

Fig. 9

(From Singh and Nelson [53]; with permission) (color figure online)

Similar content being viewed by others

References

  1. Ahmad QN, Britten EJ, Byth DE. A quantitative method of karyotypic analysis applied to the soybean, Glycine max. Cytologia. 1983;48:879–92.

    Article  Google Scholar 

  2. Akpertey A, Singh RJ, Diers BW, Graef GL, Mian MAR, Shannon JG, Scaboo AM, Hudson ME, Thurber CS, Brown PJ, Nelson RL. Genetic introgression from Glycine tomentella to soybean to increase seed yield. Crop Sci. 2018;58:1277–91.

    Article  CAS  Google Scholar 

  3. Bauer S, Hymowitz T, Noel GR. Soybean cyst nematode resistance derived from Glycine tomentella in amphiploid (G. max × G. tomentella) hybrid lines. Nematropica. 2007;37:277–85.

    Google Scholar 

  4. Broich SL, Palmer RG. A cluster analysis of wild and domesticated soybean phenotypes. Euphytica. 1980;29:23–32.

    Article  Google Scholar 

  5. Burdon JJ. Major gene for resistance to Phakopsora pachyrhizi in Glycine canescens, a wild relative of soybean. Theor Appl Genet. 1988;75:923–8.

    Article  Google Scholar 

  6. Carpenter JB, Fehr WR. Genetic variability for desirable agronomic traits in populations containing Glycine soja germplasm. Crop Sci. 1986;26:681–6.

    Article  Google Scholar 

  7. Carter TE Jr, Huie EB, Burton JW, Farmer FS, Gizlice Z. Registration of ‘Pearl’ soybean. Crop Sci. 1995;35:1713.

    Article  Google Scholar 

  8. Carter TE Jr, Nelson RL, Sneller CH, Cui Z. Genetic diversity in soybean. In: Boerma HR, Specht JE, editors. Soybeans: improvement, production, and uses, agronomy monograph, vol. 16. 3rd ed. Madison: American Society of Agronomy, Inc., Crop Science Society of America, Inc., Soil Science Society of America, Inc; 2004. p. 303.

    Google Scholar 

  9. Chung G, Singh RJ. Broadening the genetic base of soybean: a multidisciplinary approach. Crit Rev Plant Sci. 2008;27:295–341.

    Article  CAS  Google Scholar 

  10. Clarindo WR, de Carvalho CR, Alves BMG. Mitotic evidence for the tetraploid nature of Glycine max provided by high quality karyograms. Plant Syst Evol. 2007;265:101–7.

    Article  Google Scholar 

  11. Concibido V, La Vallee B, Mclaird P, Pineda N, Meyer J, Hummel L, Yang J, Wu K, Delannay X. Introgression of a quantitative trait locus for yield from Glycine soja into commercial soybean cultivars. Theor Appl Genet. 2003;106:575–82.

    Article  CAS  PubMed  Google Scholar 

  12. Domagalski JM, Kollipara KP, Bates AHD, Brandon L, Friedman M, Hymowitz T. Nulls for the major soybean Bowman–Birk protease inhibitor in the genus Glycine. Crop Sci. 1992;32:1502–5.

    Article  CAS  Google Scholar 

  13. Ertle DS, Fehr WR. Agronomic performance of soybean genotypes from Glycine max × Glycine soja crosses. Crop Sci. 1985;25:589–92.

    Article  Google Scholar 

  14. Fehr WR, Cianzio SR, Welke GA. Registration of ‘SS202’ soybean. Crop Sci. 1990;30:1361.

    Google Scholar 

  15. Fehr WR. Registration of ‘SS201’ soybean. Crop Sci. 1990;30:1361.

    Google Scholar 

  16. Findley SD, Cannon S, Varala K, Du J, Ma J, Hudson ME, Birchler JA, Stacey G. A fluorescence in situ hybridization system for karyotyping soybean. Genetics. 2010;185:727–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Fukuda Y. Cyto-genetical studies on the wild and cultivated Manchurian soy beans (Glycine L.). Jpn J Bot. 1933;6:489–506.

    Google Scholar 

  18. Harlan JR, de Wet JMJ. Toward a rational classification of cultivated plants. Taxon. 1971;20:509–17.

    Article  Google Scholar 

  19. Hart SB, Glenn S, Kenworthy WW. Tolerance and the basis for selectivity to 2, 4-D in perennial Glycine species. Weed Sci. 1991;39:535–9.

    Article  Google Scholar 

  20. Hartman GL, Wang TC, Hymowitz T. Sources of resistance to soybean rust in perennial Glycine species. Plant Dis. 1992;76:396–9.

    Article  Google Scholar 

  21. Hartman GL, Gardner ME, Hymowitz T, Naidoo GC. Evaluation of perennial Glycine species for resistance to soybean fungal pathogens that cause sclerotinia stem rot and sudden death syndrome. Crop Sci. 2000;40:545–9.

    Article  Google Scholar 

  22. Hermann FJ. A revision of the genus Glycine and its immediate allies. United States Department of Agriculture, Agricultural Research Service. Technical Bulletin No. 1268; 1962. p. 82.

  23. Hill CB, Li Y, Hartman GL. Resistance of Glycine species and various cultivated legumes to the soybean aphid (Homoptera: Aphidiae). J Econ Entomol. 2004;97:1071–7.

    Article  PubMed  Google Scholar 

  24. Horlock CM, Teakle DS, Jones RM. Natural infection of the native pasture legumes, Glycine latifolia, by alfalfa mosaic virus in Queensland. Australas Plant Pathol. 1997;26:115–6.

    Article  Google Scholar 

  25. Hymowitz T, Singh RJ, Larkin RP. Long-distance dispersal: the case for the allopolyploid Glycine tabacina (Labill.) Benth. and G. tomentella Hayata in the West-Central Pacific. Micronesica. 1990;23:5–13.

    Google Scholar 

  26. Hyten DL, Song Q, Zhu V, Choi IK-Y, Nelson RL, Costa JM, Specht JE, Shoemaker RC, Cregan PB. Impacts of genetic bottlenecks on soybean genome diversity. Proc Natl Acad Sci U S A. 2006;103:16666–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Karpechenko GD. On the chromosomes of Phaseolinae. Bull Appl Bot Genet Plant Breed Leningr. 1925;14(2):143–8 (In Russian with English summary).

    Google Scholar 

  28. Kilen TC, He G. Identification and inheritance of metribuzin tolerance in wild soybean. Crop Sci. 1992;32:684–5.

    Article  CAS  Google Scholar 

  29. Kofsky J, Zhang H, Song B-H. The untapped genetic reservoir: the past, current, and future applications of the wild soybean (Glycine soja). Front Plant Sci. 2018;9:949. https://doi.org/10.3389/fpls.2018.00949.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lackey JA. Neonotonia, a new generic name to include Glycine wightii (Arnott) Verdcourt (Legumonosae, Papilionoideae). Phytologia. 1977;37:209–12.

    Google Scholar 

  31. Ladizinsky G, Newell CA, Hymowitz T. Giemsa staining of soybean chromosomes. J Hered. 1979;70:415–6.

    Article  Google Scholar 

  32. Ladizinsky G, Newell CA, Hymowitz T. Wide crosses in soybeans: prospects and limitations. Euphytica. 1979;28:421–3.

    Article  Google Scholar 

  33. Lee JD, Shannon JG, Vuong TD, Nguyen HT. Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463. J Hered. 2009;100:798–801.

    Article  CAS  PubMed  Google Scholar 

  34. Li Z, Nelson RL. RAPD marker diversity among cultivated and wild soybean accessions from four Chinese provinces. Crop Sci. 2002;42:1737–1744.

    Article  Google Scholar 

  35. Lim SM, Hymowitz T. Reaction of perennial wild species of genus Glycine to Septoria glycines. Plant Dis. 1987;71:891–3.

    Article  Google Scholar 

  36. Luo Q, Yu B, Liu Y. Differential sensitivity to chloride to and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol. 2005;162:1003–12.

    Article  CAS  PubMed  Google Scholar 

  37. Lynch AJJ. The identification and distribution of Glycine latrobeana (Meissn.) Benth. in Tasmania. Proc R Soc Tasman. 1994;128:17–20.

    Google Scholar 

  38. Mignucci JS, Chamberlain DW. Interaction of Microsphaera diffusa with soybean and other legumes. Phytopathology. 1978;68:169–73.

    Article  Google Scholar 

  39. Nickell CD, Noel GR, Cary TR, Thomas DJ. Registration of ‘Dwight’ soybean. Crop Sci. 1998;38:1398.

    Google Scholar 

  40. Ohara M, Shimamoto Y. Importance of genetic characterization and conservation of plant genetic resources: the breeding system and genetic diversity of wild soybean (Glycine soja). Plant Species Biol. 2002;17:51–8.

    Article  Google Scholar 

  41. Ohmido N, Sato S, Tabata S, Fukui K. Chromosome maps of legumes. Chromosome Res. 2007;15:97–103.

    Article  CAS  PubMed  Google Scholar 

  42. Pantalone VR, Kenworthy WJ, Slaughter LH, James BR. Chloride tolerance in soybean and perennial Glycine accessions. Euphytica. 1997;97:235–9.

    Article  Google Scholar 

  43. Pantalone VR, Rebetzke GJ, Burton JW, Wilson RF. Genetic regulation of linolenic acid concentration in wild soybean Glycine soja accessions. JAOCS. 1997;74:159–63.

    Article  CAS  Google Scholar 

  44. Passarge E. Emil Heitz and the concept of heterochromatin: longitudinal chromosome differentiation was recognized 50 years ago. Am J Hum Genet. 1979;31:106–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Pueppke SG. Nodulating associations among rhizobia and legumes of the genus Glycine subgenus Glycine. Plant Soil. 1988;109:189–93.

    Article  Google Scholar 

  46. Rani A, Kumar V, Gill BS, Shukla S, Rathi P, Singh RK. Mapping of duplicate dominant genes for Mungbean yellow mosaic India virus resistance in Glycine soja. Crop Sci. 2018;58:1566–74.

    Article  CAS  Google Scholar 

  47. Schoen DJ, Burdon JJ, Brown AHD. Resistance of Glycine tomentella to soybean leaf rust Phakopsora pachyrhizi in relation to ploidy level and geographical distribution. Theor Appl Genet. 1992;83:827–32.

    Article  CAS  PubMed  Google Scholar 

  48. Sen NK, Vidyabhusan RV. Tetraploid soybeans. Euphytica. 1960;9:317–22.

    Article  CAS  Google Scholar 

  49. Singh RJ. Practical manual on plant cytogenetics. Boca Raton: CRC Press; 2018.

    Google Scholar 

  50. Singh RJ, Hymowitz T. The genomic relationships between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theor Appl Genet. 1988;76:705–11.

    Article  CAS  PubMed  Google Scholar 

  51. Singh RJ, Kim HH, Hymowitz T. Distribution of rDNA loci in the genus Glycine Willd. Theor Appl Genet. 2001;103:212–8.

    Article  CAS  Google Scholar 

  52. Singh RJ, Nelson RL. Methodology for creating alloplasmic soybean lines by using Glycine tomentella as a maternal parent. Plant Breed. 2014;133:624–31.

    Article  CAS  Google Scholar 

  53. Singh RJ, Nelson RL. Intersubgeneric hybridization between Glycine max and G. tomentella: production of F1, amphidiploid, BC1, BC2, BC3, and fertile soybean plants. Theor Appl Genet. 2015;128:1117–36.

    Article  CAS  PubMed  Google Scholar 

  54. Tateishi Y, Ohashi H. Taxonomic studies on Glycine of Taiwan. J Jpn Bot. 1992;67:127–47.

    Google Scholar 

  55. Thseng FS, Tsai SJ, Abe J, Wu ST. Glycine formosana Hosokawa in Taiwan: pod morphology, allozyme, and DNA polymorphism. Bot Bull Acad Sin. 1999;40:251–7.

    CAS  Google Scholar 

  56. Tuyen DD, Lal SK, Xu DH. Identification of major QTL allele from wild soybean (Glycine soja Sieb. & Zucc.) for increasing alkaline salt tolerance in soybean. Theor Appl Genet. 2010;121:229–36.

    Article  CAS  PubMed  Google Scholar 

  57. Verdcourt B. A proposal concerning Glycine L. Taxon. 1966;15:34–6.

    Article  Google Scholar 

  58. Wen L, Yuan C, Herman TK, Hartman GL. Accessions of perennial Glycine species with resistance to multiple types of soybean cyst nematode (Heterodera glycines). Plant Dis. 2017;101:1201–6.

    Article  CAS  PubMed  Google Scholar 

  59. Winter SMJ, Shelp BJ, Anderson TR, Welacky TW, Rajcan I. QTL associated with horizontal resistance to soybean cyst nematode in Glycine soja PI 464925B. Theor Appl Genet. 2007;114:461–72.

    Article  PubMed  Google Scholar 

  60. Xu SJ, Singh RJ, Kollipara KP, Hymowitz T. Primary trisomics in soybean: origin, identification, breeding behavior, and use in linkage mapping. Crop Sci. 2000;40:1543–1551.

    Article  Google Scholar 

  61. Yanagisawa T, Tano S, Fukui K, Harada K. Marker chromosomes commonly observed in the genus Glycine. Theor Appl Genet. 1991;81:606–12.

    Article  CAS  PubMed  Google Scholar 

  62. Yu N, Diers BW. Fine mapping of the SCN resistance QTL cqSCN-006 and cqSCN-007 from Glycine soja PI 468916. Euphytica. 2017;213–215:54. https://doi.org/10.1007/s10681-016-1791-2.

    Article  CAS  Google Scholar 

  63. Zheng C, Chen P, Hymowitz T, Wickizer S, Gergerich R. Evaluation of Glycine species for resistance to Bean pod mottle virus. Crop Prot. 2005;24:49–56.

    Article  CAS  Google Scholar 

  64. Zou JJ, Singh RJ, Lee J, Xu SJ, Cregan PB, Hymowitz T. Assignment of molecular linkage groups to soybean chromosomes by primary trisomics. Theor Appl Genet. 2003;107:745–50.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks Dr. David Walker and Dr. G. Govindjee for careful reading of the manuscript, Dr. Anurudh K Singh and an anonymous reviewer for editing the manuscript thoroughly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ram J. Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.J. Cytogenetics and genetic introgression from wild relatives in soybean. Nucleus 62, 3–14 (2019). https://doi.org/10.1007/s13237-019-00263-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-019-00263-6

Keywords

Navigation