Skip to main content
Log in

Transcriptomic changes under stress conditions with special reference to glutathione contents

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Plants are sessile organisms. They have to endure the environmental catastrophe throughout their life cycle. To survive in these hostile surroundings, plants posses an efficient and fine-tuned defense mechanism. This is a well established fact that various defense molecules viz. salicylic acid (SA), jasmonic acid, abscisic acid (ABA), ethylene (ET) and so on, are working in a synergistic as well as antagonistic fashion to establish and activate the effective defense mechanism. Interestingly, glutathione is gaining a gradual importance in this complex scenario. This multifunctional biomolecule exists in two forms. The reduced form, viz. GSH, is primarily present at millimolar concentrations in various plant tissues as compared to its oxidized form, glutathione disulfide, GSSG. Proteo-genomics analysis confirmed that GSH plays a vital role in plant resistance against biotic and abiotic stresses by stimulating various defense genes and proteins. In recent times, it has been reported that modulation of GSH contents transmits information through diverse signaling mechanisms. GSH also modulates various stresses and defense related genes by interacting with ABA and ET in response to abiotic stress conditions. However, there are still many unanswered questions about the intricate molecular mechanism of GSH’s contribution in plant defense. With these backgrounds, presently we primarily discussed the transcriptomic changes under stress conditions in Arabidopsis thaliana at altered GSH contents. Transcriptomic profiling of phytoalexin-deficient mutant (pad2.1), a GSH depleted A. thaliana mutant, in response to combined cold and osmotic stress treatment, was compared to that of A. thaliana ecotype Col-0, the wild type, with a view to identify the genes altered under changed GSH conditions to combat stress. It was evident from these datasets that the transcript level responses of pad2.1 to this treatment were massive. Again, analysis of combined cold and osmotic stress treated other mutants of Arabidopsis transcriptome was performed to elucidate the crosstalk between the ABA, ET and GSH. Results revealed the differential regulation of about 2313 and 4131 transcripts in A. thaliana mutants viz. ethylene insensitive (ein2) and ABA deficient 1(aba1.6) respectively. Together, present findings elucidate an active interplay of GSH with SA, ET, and ABA to combat environmental stress conditions in planta.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

(Source: PLoS One. 2015;10: e0122690)

Fig. 4

(Source: Sci Reports. 2016;15:36867)

Similar content being viewed by others

References

  1. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124:783–801. https://doi.org/10.1016/j.cell.2006.02.01.

    CAS  PubMed  Google Scholar 

  2. Alexander D, Stinson J, Pear J, Glascock C, Ward E, Goodman RM, Ryals J. A new multigene family inducible by tobacco mosaic virus or salicylic acid in tobacco. Mol Plant-Microbe Interact. 1992;5:513–5.

    Article  CAS  PubMed  Google Scholar 

  3. Balabanova D, Remans T, Vessilev A, Cuypers A, Vangronsveld J. Possible involvement of glutathione S-transferases in imazamox detoxification in an imidazolinone-resistant sunflower hybrid. J Plant Physiol. 2018;221:62–5. https://doi.org/10.1016/j.jplph.2017.12.008.

    Article  CAS  PubMed  Google Scholar 

  4. Ball L, Accotto GP, Bechtold U, Creissen G, Funck D, Jimenez A. Evidence for a direct link between glutathione biosynthesis and stress defence gene expression in Arabidopsis. Plant Cell. 2004;16:2448–62. https://doi.org/10.1105/tpc.104.022608.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Blanco F, Salinas P, Cecchini NM, Jordana X, Van Hummelen P, Alvarez ME, Holuigue L. Early genomic responses tosalicylic acid in Arabidopsis. Plant Mol Biol. 2009;70:79–102. https://doi.org/10.1007/s11103-009-9458-1.

    Article  CAS  PubMed  Google Scholar 

  6. Borevitz JO, Xia Y, Blount J, Dixon RA, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell. 2000;12:2383–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bradley DJ, Kjellbom P, Lamb CJ. Elicitor and wound induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defense response. Cell. 1992;70:21–30. https://doi.org/10.1016/0092-8674(92)90530-P.

    Article  CAS  PubMed  Google Scholar 

  8. Brown DM, Upcroft JA, Upcroft P. Cysteine is the major low-molecular weight thiol in Giardia duodenalis. Mol Biochem Parasitol. 1993;61:155–8. https://doi.org/10.1016/S0166-6851(96)02776-4.

    Article  CAS  PubMed  Google Scholar 

  9. Burow M, Zhang Z-Y, Ober JA, Lambrix VM, Wittstock U, Gershenzon J, Kliebenstein DJ. ESP and ESM1 mediateindol-3-acetonitrile production from indol-3-ylmethyl glucosinolatein Arabidopsis. Phytochemistry. 2008;69:663–71. https://doi.org/10.1016/j.phytochem.2007.08.027.

    Article  CAS  PubMed  Google Scholar 

  10. Cao H, Glazebrook J, Clarke JD, Volko S, Dong X. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell. 1997;88:57–63. https://doi.org/10.1016/S0092-8674(00)81858-9.

    Article  CAS  PubMed  Google Scholar 

  11. Cheng MC, Ko K, Chang WL, Kuo WC, Chen GH, Lin TP. Increased glutathione contributes to stress tolerance and global translational changes in Arabidopsis. Plant J. 2015;83:926–39. https://doi.org/10.1111/tpj.12940

    Article  CAS  PubMed  Google Scholar 

  12. Choudhury FK, Devireddy AR, Azad RK, Shulaev V, Mittler R. Rapid accumulation of glutathione during light stress in Arabidopsis. Plant Cell Physiol. 2018;59:1817–26. https://doi.org/10.1093/pcp/pcy101.

    Article  CAS  PubMed  Google Scholar 

  13. Cobbett CS, May MJ, Howden R, Rolls B. The glutathione-deficient, cadmium-sensitive mutant, cad2-1, of Arabidopsis thaliana is deficient in γ-glutamyl cysteine synthase. Plant J. 1998;16(1):73–8. https://doi.org/10.1046/j.1365-313x.1998.00262.x.

    Article  CAS  PubMed  Google Scholar 

  14. Copley SD, Dhillon JK. Lateral gene transfer and parallel evolution in the history of glutathione biosynthesis genes. Genome Biol. 2002. https://doi.org/10.1186/gb-2002-3-5-research0025.

  15. Datta R, Chattopadhyay S. Glutathione as a crucial modulator of phytohormone signalling during pathogen defence in plants. Proc Ind Natl Sci Acad. 2018. https://doi.org/10.16943/ptinsa/2018/49349.

  16. Datta R, Kumar D, Sultana A, Hazra S, Bhattacharyya D, Chattopadhyay S. Glutathione regulates 1-aminocyclopropane-1-carboxylate synthase transcription via WRKY33 and 1-aminocyclopropane-1-carboxylate oxidase by modulating messenger RNA stability to induce ethylene synthesis during stress. Plant Physiol. 2015;169:2963–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. De Vos M, Zaanen WV, Koornneef A, Korzelius JP, Dicke M, Van Loon LC, Pieterse CMJ. Herbivore-induced resistance against microbial pathogens in Arabidopsis. Plant Physiol. 2006;142:352–63. https://doi.org/10.1104/pp.106.083907.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Dong X. SA, JA, ethylene, and disease resistance in plants. Curr Opin Plant Biol. 1998;1:316–23. https://doi.org/10.1016/1369-5266(88)80053-0.

    Article  CAS  PubMed  Google Scholar 

  19. Dron M, Clouse SD, Dixon RA, Lawton MA, Lamb CJ. Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. PNAS. 1988;85:6738–42. https://doi.org/10.1073/pnas.85.18.6738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ellis JE, Yarlett N, Cole D, Humphreys MJ, Lloyd D. Antioxidant defenses in the microaerophlic protozoan Trichomontas vaginalis: comparison of metronidazole-resistant and sensitive strains. Microbiology. 1994;140:2489–94.

    Article  CAS  PubMed  Google Scholar 

  21. Fahey RC, Newton GL, Arrick B, Overdang-Bogart T, Aley SB. Entamoeba histolytica: a eukaryote without glutathione metabolism. Science. 1984;224:70–2.

    Article  CAS  PubMed  Google Scholar 

  22. Fatma M, Asgher M, Masood A, Khan NA. Excess sulfur supplementation improves photosynthesis and growth in mustard under salt stress through increased production of glutathione. Environ Exp Bot. 2014;107:55–63. https://doi.org/10.1016/j.envexpbot.2014.05.008.

    Article  CAS  Google Scholar 

  23. Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 2011;155(1):2–18. https://doi.org/10.1104/pp.110.167569.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ghanta S, Bhattacharyya D, Sinha R, Banerjee A, Chattopadhyay S. Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway. Planta. 2011;233:895–910. https://doi.org/10.1007/s00425-011-1349-4.

    Article  CAS  PubMed  Google Scholar 

  25. Ghanta S, Datta R, Bhattacharyya D, Sinha R, Kumar D, Hazra S, Mazumder AB, Chattopadhyay S. Multistep involvement of glutathione with salicylic acid and ethylene to combat environmental stress. J Plant Physiol. 2014. https://doi.org/10.1016/j.jplph.2014.03.002.

  26. Glazebrook J, Ausubel FM. Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. PNAS. 1994;91:8955–9. https://doi.org/10.1073/pnas.91.19.8955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gomez LD, Noctor G, Knight MR, Foyer CH. Regulation of calcium signaling and gene expression by glutathione. J Exp Bot. 2004;55:1851–9. https://doi.org/10.1093/jxb/erh202.

    Article  CAS  PubMed  Google Scholar 

  28. Grant MR, Jones JDG. Hormone (dis) harmony moulds plant health and disease. Science. 2009;324:750–2. https://doi.org/10.1126/science.1173771.

    Article  CAS  PubMed  Google Scholar 

  29. Grill D, Tausz M, Tausz MM, De Kok LJ. Significance of glutathione in plant adaptation to the environment, vol. 2nd, vol. Dordrecht: Kluwer; 2001.

    Book  Google Scholar 

  30. Hanson GT, Aggeler R, Oglesbee D, Cannon M, Capaldi RA, Tsien RY, Remington SJ. Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. J Biol Chem. 2004;279:13044–53. https://doi.org/10.1074/jbc.M312846200.

    Article  CAS  PubMed  Google Scholar 

  31. Hartmann TN, Fricker MD, Rennenberg H, Meyer AJ. Cell-specific measurement of cytosolic glutathione in poplar leaves. Plant Cell Environ. 2003;26:965–75. https://doi.org/10.1046/j.1365-3040.2003.01031.x.

    Article  CAS  PubMed  Google Scholar 

  32. Hell R, Bergmann L. γ-Glutamylcysteinesynthetase in higher plants: catalytic properties and subcellular localization. Planta. 1990;180:603–12.

    Article  CAS  PubMed  Google Scholar 

  33. Hell R, Bergmann L. Glutathione synthetase in tobacco suspension cultures: catalytic properties and localization. Physiol Planta. 1988;72:70–6. https://doi.org/10.1111/j.1399-3054.1988.tb06624.x.

    Article  CAS  Google Scholar 

  34. Henmi K, Demura T, Tsuboi S, Fukuda H, Iwabuchi M, Ogawa K. Change in the redox state of glutathione regulates differentiation of tracheary elements in Zinnia cells and Arabidopsis roots. Plant Cell Physiol. 2005;46(11):1757–65. https://doi.org/10.1093/pcp/pci198.

    Article  CAS  PubMed  Google Scholar 

  35. Hirai MY, Sugiyama K, Sawada Y, Tohge T, Obayashi T, Suzuki A, Araki R, Sakurai N, Suzuki H, Aoki K, Goda H, Nishizawa OI, Shibata D, Saito K. Omics-based identification of Arabidopsis Myb transcription factors regulating aliphatic glucosinolate biosynthesis. Proc Natl Acad Sci. 2007;104:6478–83. https://doi.org/10.1073/pnas.0611629104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hiruma K, Fukunaga S, Bednarek P, Pislewska-Bednarek M, Watanabe S, Narusaka Y, Shirasu K, Takano Y. Glutathione and tryptophan metabolism are required for Arabidopsis immunity during the hypersensitive response to hemibiotrophs. Proc Natl Acad Sci. 2013;110:9589–94. https://doi.org/10.1073/pnas.1305745110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Horibe T, Nagai H, Sakakibara K, Hagiwara Y, Kikuchi M. Ribostamycin inhibits the chaperone activity of protein disulfide isomerase. Biochem Biophys Res Comm. 2001;5:965–72. https://doi.org/10.1006/bbrc.2001.6105.

    Google Scholar 

  38. Huan C, Jiang L, An X, Kang R, Yu M, Ma R, Yu Z. Potential role of glutathione peroxidase gene family in peach fruit ripening under combined postharvest treatment with heat and 1-MCP. Postharvest Biol Technol. 2016;111:175–84. https://doi.org/10.1016/j.postharvbio.2015.08.016.

    Article  CAS  Google Scholar 

  39. Islam S, Choudhury M, Majlish K, Islam T, Ghosh A. Comprehensive genome-wide analysis of Glutathione S-transferase gene family in potato (Solanum tuberosum L.) and their expression profiling in various anatomical tissues and perturbation conditions. Gene. 2018;639:149–62. https://doi.org/10.1016/j.gene.2017.10.007.

    Article  CAS  PubMed  Google Scholar 

  40. Janowiak BE, Griffith OW. Glutathione Synthesis in Streptococcus agalactiae. J Biol Chem. 2005;280:11829–39. https://doi.org/10.1074/jbc.M414326200.

    Article  CAS  PubMed  Google Scholar 

  41. Joshi NC, Meyer AJ, Bangash SAK, Zheng ZL, Leustek T. Arabidopsis γ-glutamylcyclotransferase affects glutathione content and root system architecture during sulfur starvation. New Phytol. 2018. https://doi.org/10.1111/nph.15466.

  42. Kao CW, Bakshi M, Sherameti I, Dong S, Reichelt M, Oelmüller R, Yeh KW. A Chinese cabbage (Brassica campetris subsp. Chinensis) τ-type glutathione-S-transferase stimulates Arabidopsis development and primes against abiotic and biotic stress. Plant Mol Biol. 2016;92:643–59. https://doi.org/10.1007/s11103-016-0531-2.

    Article  CAS  PubMed  Google Scholar 

  43. Klessig DF, Durner J, Noad R, Navarre DA, Wendehenne D, Kumar D, Zhou JM, Shah J, Zhang S, Kachroo P, Trifa Y, Pontier D, Lam E, Silva H. Nitric oxide and salicylic acid signaling in plant defense. Proc Natl Acad Sci. 2000;97(16):8849–55. https://doi.org/10.1073/pnas.97.16.8849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kovacs I, Durner J, Lindermayr C. Crosstalk between nitric oxide and glutathione is required for NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1(NPR1)-dependent defense signaling in Arabidopsis thaliana. New Phytol. 2015;208:860–72. https://doi.org/10.1111/nph.13502.

    Article  CAS  PubMed  Google Scholar 

  45. Kumar D, Chattopadhyay S. Glutathione modulates the expression of heat shock proteins via the transcription factors BZIP10 and MYB21 in Arabidopsis. J Exp Bot. 2018;69:3729–43. https://doi.org/10.1093/jxb/ery166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kumar D, Datta R, Hazra S, Sultana A, Mukhopadhyay R, Chattopadhyay S. Transcriptomic profiling of Arabidopsis thaliana mutant pad2.1 in response to combined cold and osmotic stress. PLoS ONE. 2015;10:e0122690. https://doi.org/10.1371/journal.pone.0122690.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Kumar D, Hazra S, Datta R, Chattopadhyay S. Transcriptome analysis of Arabidopsis mutants suggests a crosstalk between ABA, ethylene and GSH against combined cold and osmotic stress. Sci Rep. 2016;15:36867. https://doi.org/10.1038/srep36867.

    Article  CAS  Google Scholar 

  48. Kumar S, Trivedi PK. Glutathione S-Transferases: role in Combating Abiotic Stresses Including Arsenic Detoxification in Plants. Front Plant Sci. 2018;9:751. https://doi.org/10.3389/fpls.2018.00751.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Kumari N, Jain V, Talwar G. Salinity induced changes in ascorbic acid, hydrogen peroxide, lipid peroxidation and glutathione content in leaves of salt tolerant and salt-susceptible cultivars of cotton (Gossypium hirsutum L.). Res. Plant Biol. 2013;3:06–11.

    Google Scholar 

  50. Kunert KJ, Foyer CH. Thiol/disulphide exchanges in plants. In: De Kok LJ, Stulen I, Rennenberg H, Brunold C, Rausen W, editors. Sulphur Nutrition and Assimilation in Higher Plants. Regulatory, Agricultural and Environmental Aspects. The Hague: SPB Academic Publishers; 1993. p. 139–51.

    Google Scholar 

  51. Kunkel BN, Brooks DM. Cross-talk between signaling pathways in pathogen defense. Curr Opin Plant Biol. 2002;5:325–31.

    Article  CAS  PubMed  Google Scholar 

  52. Kuźniak E, Kopczewski T, Koźniewska JC. Ascorbate-glutathione cycle and biotic stress tolerance in plants. In: Hossain MA, Munné-Bosch S, Burritt DJ, Diaz-Vivancos P, Fujita M, Lorence A, editors. Ascorbic Acid in Plant Growth, Development and Stress tolerance. Cham: Springer; 2017. p. 201–31.

    Chapter  Google Scholar 

  53. Labade CP, Jadhav AR, Ahire M, Zinjarde SS, Tamhane VA. Role of induced glutathione-S-transferase from Helicoverpa armigera (Lepidoptera: noctuidae) HaGST-8 in detoxification of pesticides. Ecotoxicol Environ Saf. 2018;147:612–21. https://doi.org/10.1016/j.ecoenv.2017.09.028.

    Article  CAS  PubMed  Google Scholar 

  54. Lai Z, Vinod KM, Zheng Z, Fan B, Chen Z. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biol. 2008;8:68. https://doi.org/10.1186/1471-2229-8-68.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Lawton KA, Potter SL, Uknes S, Ryals J. Acquired resistance signal transduction in Arabidopsis is ethylene independent. Plant Cell. 1994;6:581–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Li H, Xu H, Graham DE, White RH. Glutathione synthatase homologs encode α-L-glutamate ligases for methanogenic coenzyme F420 and tetrahydrosarcinapterin biosyntheses. Proc Natl Acad Sci. 2003. https://doi.org/10.1073/pnas.1733391100.

  57. Lin TH, Rao MY, Lu HW, Chiou CW, Lin ST, Chao HW, Zheng ZL, Cheng HC, Lee TM. A role for glutathione reductase and glutathione in the tolerance of Chlamydomonas reinhardtii to photo-oxidative stress. Physiol Plant. 2018;162:35–48. https://doi.org/10.1111/ppl.12622.

    Article  CAS  PubMed  Google Scholar 

  58. Matern S, Berghoefer TP, Gromes R, Kiesel RV, Rausch T. Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against Pseudomonas syringae. J Exp Bot. 2015;66:1935–50. https://doi.org/10.1093/jxb/eru546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Meister A. Glutathione metabolism and its selective modification. J Biol Chem. 1988;263:17205–8.

    Article  CAS  PubMed  Google Scholar 

  60. Meyer AJ, Fricker MD. Control of demand-driven biosynthesis of glutathione in green Arabidopsis suspension culture cells. Plant Physiol. 2002;130:1927–37. https://doi.org/10.1104/pp.008243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Meyer AJ, May MJ, Fricker M. Quantitative in vivo measurement of glutathione in Arabidopsis cells. Plant J. 2001;27:67–78. https://doi.org/10.1046/j.1365-313x.2001.01071.x.

    Article  CAS  PubMed  Google Scholar 

  62. Mhamdi A. Managing competing interests: partitioning S between glutathione and protein synthesis. Plant Physiol. 2018;177:867–8. https://doi.org/10.1104/pp.18.00661.

    Article  CAS  PubMed  Google Scholar 

  63. Moura JCMS, Bonine CAV, de Oliveira Fernandes Viana J, Dornelas MC, Mazzafera P. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol. 2010;52:360–76. https://doi.org/10.1111/j.1744-7909.2010.00892.x.

    Article  CAS  PubMed  Google Scholar 

  64. Mukherjee AK, Carp MJ, Zuchman R, Ziv T, Horwitz BA, Gepstein S. Proteomics of the response of Arabidopsis thaliana to infection with Alternaria brassicicola. J Proteom. 2010;73:709–20. https://doi.org/10.1016/j.jprot.2009.10.005.

    Article  CAS  Google Scholar 

  65. Noctor G, Foyer CH. ASCORBATE AND GLUTATHIONE: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol. 1998;49:249–79.

    Article  CAS  Google Scholar 

  66. Nürnberger T, Brunner F, Kemmerling B, Piater L. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev. 2004;198:249–66.

    Article  PubMed  Google Scholar 

  67. Ohme-Takagi M, Shinshi H. Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. Plant Cell. 1995;7:173–82. https://doi.org/10.1105/tpc.7.2.173.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Parisy V, Poinssot B, Owsianowski L, Buchala A, Glazebrook J, Mauch F. Identification of PAD2 as a gamma-glutamylcysteinesynthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 2007;49:159–72. https://doi.org/10.1111/j.1365-313X.2006.02938.x.

    Article  CAS  PubMed  Google Scholar 

  69. Passaia G, Pinheiro MM. Glutathione peroxidases as redox sensor proteins in plant cells. Plant Sci. 2015;234:22–6. https://doi.org/10.1016/j.plantsci.2015.01.017.

    Article  CAS  PubMed  Google Scholar 

  70. Pieterse CMJ, Leon-Reyes A, Van der Ent S, Van Wees SCM. Networking by small-molecule hormones in plant immunity. Nat Chem Biol. 2009;5:308–16. https://doi.org/10.1038/nchembio.164.

    Article  CAS  PubMed  Google Scholar 

  71. Rennenberg H. Molecular approaches to glutathione biosynthesis. In: Cram WJ, DeKok LJ, Stulen I, Brunold C, Renneberg H, editors. Sulphur metabolism in higher plants; molecular, ecophysiological and nutritional aspects. Leiden: Backhuys Publishers; 1997. p. 59–70.

    Google Scholar 

  72. Rüegsegger A, Brunold C. Localization of γ–glutamylcysteine synthetase and glutathione synthetase activity in maize seedling. Plant Physiol. 1993;101:380–90.

    Article  Google Scholar 

  73. Schlaeppi K, Bodenhausen N, Buchala A, Mauch F, Reymond P. The glutathione-deficient mutant pad2-1 accumulates lower amounts of glucosinolates and is more susceptible to the insect herbivore Spodoptera littoralis. Plant J. 2008;55:774–86. https://doi.org/10.1111/j.1365-313X.2008.03545.x.

    Article  CAS  PubMed  Google Scholar 

  74. Semida WM, Hemida KA, Rady MM. Sequenced ascorbate-proline-glutathione seed treatment elevates cadmium tolerance in cucumber transplants. Ecotoxicol Environ Safety. 2018;154:171–9. https://doi.org/10.1016/j.ecoenv.2018.02.036.

    Article  CAS  PubMed  Google Scholar 

  75. Shepherd RW, Bass WT, Houtz RL, Wagner GJ. Phylloplanins of tobacco are defensive proteins deployed on aerial surfaces by short glandular trichomes. Plant Cell 2005;17:1851–61. https://doi.org/10.1105/tpc.105.031559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shepherd RW, Wagner GJ. Phylloplane proteins: Emerging defenses at the aerial frontline? Trends Plant Sci. 2007;12:51–6.

    Article  CAS  PubMed  Google Scholar 

  77. Singla-Pareek SL, Reddy MK, Sopory SK. Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. Proc Nat Acad Sci. 2003;100:14672–7. https://doi.org/10.1073/pnas.2034667100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Sinha R, Kumar D, Datta R, Hazra S, Bhattacharyya D, Mazumdar AB, Mukhopadhyay R, Sultana A, Chattopadhyay S. Integrated transcriptomic and proteomic analysis of Arabidopsis thaliana exposed to glutathione unravels its role in plant defense. Plant Cell Tissue Org Cult. 2014;120:975–88.

    Article  CAS  Google Scholar 

  79. Spoel SH, Dong X. How do plants achieve immunity? Defence without specialized immune cells. Natl Rev Immunol. 2012;12:89–100.

    Article  CAS  Google Scholar 

  80. Stracke R, Ishihara H, Huep G, Barsch A, Mehrtens F, Niehaus K, Weisshaar B. Differential regulation of closely relatedR2R3-MYB transcription factors controls flavonol accumulation in different parts of the Arabidopsis thaliana seedling. Plant J. 2007;50:660–77. https://doi.org/10.1111/j.1365-313X.2007.03078.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Suttipanta N, Pattanaik S, Kulshrestha M, Patra B, Singh SK, Yuan L. The transcription factor CrWRKY1 positively regulates the terpenoidindole alkaloid biosynthesis in Catharanthusroseus. Plant Physiol. 2011;157:2081–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Teh CY, Mahmood M, Shaharuddin NA, Ho CL. In vitro rice shoot apices as simple model to study the effect of NaCL and the potential exogenous proline and glutathione in mitigating salinity stress. Plant Growth Regul. 2014;75(3):771–81. https://doi.org/10.1007/s10725-014-9980-2.

    Article  CAS  Google Scholar 

  83. Tyagi S, Himani Sembi JK, Gene Upadhyay SK. architecture and expression analyses provide insights into the role of glutathione peroxidases (GPXs) in bread wheat (Triticum aestivum L.). J Plant Physiol. 2018;223:19–31. https://doi.org/10.1016/j.jplph.2018.02.006.

    Article  CAS  PubMed  Google Scholar 

  84. Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Montagu MV, Inzé D, May MJ, Sung XR. The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell. 2000;12:97–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Vlot AC, Klessig DF, Park SW. Systemic acquired resistance: the elusive signal(s). Curr Opin Plant Biol. 2008;11:436–42. https://doi.org/10.1016/j.pbi.2008.05.003.

    Article  CAS  PubMed  Google Scholar 

  86. Wingate VPM, Lawton MA, Lamb CJ. Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol. 1988;87:206–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wu TM, Lin WR, Kao CH, Hong CY. Gene knockout of glutathione reductase 3 results in increased sensitivity to salt stress in rice. Plant Mol Biol. 2015;87:555–64. https://doi.org/10.1007/s11103-015-0290-5.

    Article  CAS  PubMed  Google Scholar 

  88. Xiang C, Werner BL, Christensen EM, Oliver DJ. The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol. 2001;126:564–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Yang SF, Hoffman NE. Ethylene biosynthesis and its regulation in higher plants. Ann Rev Plant Physiol. 1984;35:155–89.

    Article  CAS  Google Scholar 

  90. Yang Z, Tian L, Latoszek-Green M, Brown D, Wu K. Arabidopsis ERF4 is a transcriptional repressor capable of modulating ethylene and abscisic acid responses. Plant Mol Biol. 2005;58:585–96.

    Article  CAS  PubMed  Google Scholar 

  91. Yoshida S, Tamaoki M, Ioki M, Ogawa D, Sato Y, Aono M, Kubo A, Saji S, Saji H, Satoh S, Nakajima N. Ethylene and salicylic acid control glutathione biosynthesis in ozone-exposed Arabidopsis thaliana. Physiol Plant. 2009;136:284–98. https://doi.org/10.1111/j.1399-3054.2009.01220.x.

    Article  CAS  PubMed  Google Scholar 

  92. Zhang Q, Zhu J, Ni Y, Cai Y, Zhang Z. Expression profiling of HbWRKY1, an ethephon-inducedWRKY gene in latex from Hevea brasiliensis in responding to wounding and drought. Trees. 2012;26:587–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the help and support of the Director, CSIR-IICB. This work received financial assistance from the Science and Engineering Research Board, (SERB) and Council of Scientific and Industrial Research (CSIR), New Delhi. PB and AS would like to acknowledge the CSIR for their fellowships. Scientific Reports (Nature Publishing Group) and Plos One (Publication Library of Science) is acknowledged herewith to reuse the figures (Figs. 4, S2, S3, and 3) respectively. Authors would like express their gratitude for invitation to contribute in this special issue of the journal, The Nucleus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmila Chattopadhyay.

Additional information

This article is dedicated to the memory of Profs. AK Sharma and Archana Sharma.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 10 kb)

Supplementary material 1 (PDF 530 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boro, P., Sultana, A., Mandal, K. et al. Transcriptomic changes under stress conditions with special reference to glutathione contents. Nucleus 61, 241–252 (2018). https://doi.org/10.1007/s13237-018-0256-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-018-0256-5

Keywords

Navigation