The Nucleus

, Volume 62, Issue 1, pp 21–30 | Cite as

Extended centromere and chromosomal mosaicism in some varieties of grass pea, Lathyrus sativus L.

  • Kalyan Kumar DeEmail author
  • Tuhin Pal
  • Animesh Mondal
  • Madhumita Majumder
  • Animesh Ghorai
Original Article


An abnormal mitotic behavior revealing chromosomal mosaicism was observed in two among the three studied cultivars (cv. Nirmal, cv. Prateek and cv. Ratan) of Lathyrus sativus. Several numerical variants of chromosome complement were detected in the different cells coexisted with normal diploid cells in the somatic tissue of the same root-tip. Somatic chromosome number 2n = 14 were found with the greatest frequency (67%); however, a spectrum of quite low percentage of discordant and variable chromosome numbers especially of aneuploidy mode, ranging from 2n = 11 (9.6%), 2n = 12 (8.7%), 2n = 13 (4.7%) and 2n = 15 (10.3%) in Nirmal cultivar were observed. In Prateek cultivar, the most interesting cytological character is that karyotype though symmetrical but indicating transition between symmetrical to asymmetrical is slightly bimodal due to presence of one pair of very small chromosomes. In general, most of the chromosomes of all cultivars were nearly median centromered. Although the cv. Ratan shows the normal chromosome number, but in 4 pairs of chromosomes, the centromere region appeared unusually ‘extended’. In Nirmal and Prateek cultivars karyotype, the secondary constriction is proximal on the short arm whereas, in some other metaphase plates, the same constriction bearing macrosatellite is on the long arm of bigger nearly submedian chromosome of pair one. We propose that the differences in satellite position arose by karyotype rearrangements; probably involving translocations. At the same time, extended centromeres may be due to the activities of retrotransposons at the centromere region of the said chromosome of cv.Nirmal.


Chromosomal mosaicism Lathyrus sativus Karyotype analysis 





Form/centromeric percentage




Long-terminal repeat



We acknowledge the Post Graduate Department of Botany, Hooghly Mohsin College, Chinsurah, West Bengal for providing the laboratory facilities. We should also like to thank Dr. (Mrs.) Durga Ghosal, Head of English Department, Hooghly Mohsin College who carefully read the manuscript and made the necessary corrections of the manuscript.

Author contributions

All authors contributed equally to this paper. TP, AM and MM performed the cytological work; AG performed the karyotype analysis and their interpretations; KKD contributed in design, analyses of the results and writing the paper.

Compliance with ethical standards

Conflict of interest

The authors declare they have no conflict of interest.


  1. 1.
    Allkin R, Goyder DJ, Bisby FA, White RJ. Names and synonyms of species and subspecies in the Vicieae, ISSUE 3 Vicieae database project, experimental taxonomic information products publication no 7. London: University of Southamton; 1985. p. 75.Google Scholar
  2. 2.
    Ball PW. Lathyrus L. In: Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walters SM, Webb DA, editors. Flora Europaea, vol. 2. London: Cambridge University Press; 1968. p. 136–43.Google Scholar
  3. 3.
    Badr S, Mustafa AE, Taher W, Sammour RH. Genetic variability in Lathyrus spp. as revealed by karyotype analysis. Cytologia. 2009;74(1):101–11.CrossRefGoogle Scholar
  4. 4.
    Battistin A, Fernandez A. Karyotypes of four species of South America natives and one cultivated species of Lathyrus L. Caryologia. 1994;47(3–4):325–30.CrossRefGoogle Scholar
  5. 5.
    Bhattacharjee SK. Cytogenetics of Lathyrus sativus Linn. Caryologia. 1954;6(2–3):333–7.CrossRefGoogle Scholar
  6. 6.
    Broich SL. Chromosome numbers of North American Lathyrus (Fabaceae). Madroño. 1989;36(1):41–8.Google Scholar
  7. 7.
    Ceccarelli M, Sarri V, Polizzi E, Andreozzi G, Cionini PG. Ogre retrotransposons in Lathyrus species. Plant Biosyst. 2013;147(1):99–104.CrossRefGoogle Scholar
  8. 8.
    Chalup L, Samoluk SS, Neffa VS, Seijo G. Karyotype characterization and evolution in South American species of Lathyrus (Notolathyrus, Leguminosae) evidenced by heterochromatin and rDNA mapping. J Plant Res. 2015;128(6):893–908.CrossRefGoogle Scholar
  9. 9.
    Darlington CD. Chromosome studies in the Scilleae. J Genet. 1926;16(2):237–51.CrossRefGoogle Scholar
  10. 10.
    Das AB, Mohanty S, Marrs RH, Das P. Somatic chromosome number and karyotype diversity in fifteen species of Mammillaria of the family Cactaceae. Cytobios. 1999;97:141–51.Google Scholar
  11. 11.
    De Melo NF, Guerra M, Benko-Iseppon AM, De Menezes NL. Cytogenetics and cytotaxonomy of Velloziaceae. Plant Syst Evol. 1997;204(3–4):257–73.CrossRefGoogle Scholar
  12. 12.
    Ertekin SA, Saya O. Turkiye Florasiicin Yeni Bir Kayit. Turk J Bot. 1996;15(19):75–7.Google Scholar
  13. 13.
    Evren H, Sahin A, Cobanoglu D. Lathyrus nissolia L. (Fabaceae)’nin Morfolojik ve Sitolojik Özellikleri. Turk J Bot. 1994;18:367–74.Google Scholar
  14. 14.
    Fedorov AA, editor. Chromosome numbers of flowering plants. Academy of Sciences of the USSR, the Komarov V.L. Botanical Institute. Leningrad: Nauka; 1969. p. 301–3.Google Scholar
  15. 15.
    Fouzdar A, Tandon SL. Cytotaxonomic investigations in the genus Lathyrus. Nucl. 1975;18:24–33.Google Scholar
  16. 16.
    Genc H, Sahin A. Cytotaxonomic investigations on some Lathyrus L. species growing in Western Mediterranean and Southern Aegean regions in Turkey III, vol. 5. Istanbul: Suleyman Demirel University, Institute of Sciences Press; 2001. p. 98–112 (in Turkish).Google Scholar
  17. 17.
    Ghasem K, Danesh-Gilevaei M, Aghaalikhani M. Karyotypic and nuclear DNA variations in Lathyrus sativus (Fabaceae). Caryologia. 2011;64(1):42–54.CrossRefGoogle Scholar
  18. 18.
    González-Aguilera JJ, Fernández-Peralta AM. Phylogenetic relationships in the family Resedaceae L. Genetica. 1984;64(3):185–97.CrossRefGoogle Scholar
  19. 19.
    Günes F, Çirpici A. Istanbul cevresinin bazi Lathyrus L. türleri (L. undulatus Boiss., L. sylvestris L., L. ochrus (L.) DC.) üzerinde morfolojik ve sitolojik arastirmalar. Istanbul: XIII. Ulusal Biyoloji Kongresi; 1996, vol. 17–20, p. 501–9.Google Scholar
  20. 20.
    Güneş F, Ozhatay N. Lathyrus L. In: Guner A, Ozhatay N, Ekim T, Baser KHC, editors. Flora of Turkey and East Aegean Islands, vol. 11 (supplement 2). Edinburgh: Edinburgh University Press; 2000. p. 92–4.Google Scholar
  21. 21.
    Gunes F. Karyotype analysis of Lathyrus taxa belonging to Platystylis (Lathyrostylis) section (Fabaceae) from Turkey. Caryologia. 2011;64(4):464–77.Google Scholar
  22. 22.
    Günes F, Meric C. Morphological, anatomical and karyological investigations of the Turkish endemic species Lathyrus woronowii Bornm. (Fabaceae). Acta Bot Croat. 2017;76(2):132–7.CrossRefGoogle Scholar
  23. 23.
    Jones K. Chromosome changes in plant evolution. Taxon. 1970;19(2):172–9.CrossRefGoogle Scholar
  24. 24.
    Klamt A, Schifino-Wittmann MT. Karyotype morphology and evolution in some Lathyrus (Fabaceae) species of Southern Brazil. Genet Mol Biol. 2000;23(2):463–7.CrossRefGoogle Scholar
  25. 25.
    Krikorian AD, O’Connor SA, Fitter MS. Chromosome number variation and karyotypic stability in cultures and culture derived plants. In: Evans DA, Sharp WR, Ammirato PV, Yamada Y, editors. Hand book of plant cell culture, vol. 1. New York: McMillan; 1983. p. 541–73.Google Scholar
  26. 26.
    Kupicha FK. The infragenetic structure of Lathyrus. Notes Roy Bot Gard. 1983;41(2):209–44.Google Scholar
  27. 27.
    Lavania UC, Sharma AK. Giemsa C banding in Lathyrus L. Bot Gaz. 1980;141(2):199–203.CrossRefGoogle Scholar
  28. 28.
    Lavania UC. Chromosomal instability in Lathyrus sativus L. Theor Appl Genet. 1982;62(2):135–8.CrossRefGoogle Scholar
  29. 29.
    Levan A, Fredga K, Sandberg AA. Nomenclature for centromeric position on chromosomes. Hereditas. 1964;52(2):201–20.CrossRefGoogle Scholar
  30. 30.
    Miller JT, Dong F, Jackson SA, Song J, Jiang J. Retrotransposon-related DNA sequences in the centromeres of grass chromosomes. Genetics. 1998;150:1615–23.Google Scholar
  31. 31.
    Naravan RKJ, Durrant A. DNA distribution in chromosomes of Lathyrus species. Genetica. 1983;61(1):47–53.CrossRefGoogle Scholar
  32. 32.
    Neumann P, Schubert V, Fuková I, Manning JE, Houben A, Macas J. Epigenetic histone marks of extended meta-polycentric centromeres of Lathyrus and Pisum chromosomes. Front Plant Sci. 2016;7:234. Scholar
  33. 33.
    Ogura H. The cytological chimeras in original regenerates from tobacco tissue cultures and in their offsprings. Jpn J Genet. 1976;51(3):161–74.CrossRefGoogle Scholar
  34. 34.
    Ogura H. Genetic control of chromosomal chimerism found in a regenerate from tobacco callus. Jpn J Genet. 1978;53(2):77–90.CrossRefGoogle Scholar
  35. 35.
    Ozcan M, Hayirlioglu-Ayaz S, Inceer H. Karyotype analysis of some Lathyrus L. taxa (Fabaceae) from north-eastern Anatolia. Acta Bot Gallica. 2006;153(3):375–85.CrossRefGoogle Scholar
  36. 36.
    Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA. Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nat Genet. 1999;23:305–8.CrossRefGoogle Scholar
  37. 37.
    Rees H, Hazarika MH. Chromosome evolution in Lathyrus. In: Darlington CD, Lewis KR, editors. Chromosomes today, vol. II. Edinburgh: Oliver & Boyd; 1969. p. 158–65.Google Scholar
  38. 38.
    Roy B. On the somatic chromosomes in Lathyrus. Cytologia. 1936;7(3):424–30.CrossRefGoogle Scholar
  39. 39.
    Roy RP, Singh MK. Cytological studies in the genus Lathyrus Linn. J Cytol Genet. 1967;2:128–40.Google Scholar
  40. 40.
    Sachs L. Chromosome mosaics in experimental amphiploids in the Triticinae. Heredity. 1952;6(2):157–70.CrossRefGoogle Scholar
  41. 41.
    Sahin A, Altan A. Türkiyenin bazi Lathyrus L. türleri (L. saxatilis (Vent.) Vis., L. vinealis Boiss. & Noe, L. conspicuus L., L. setifolius L.) Üzerinde Karyolojik arastirmalar. Turk J Bot. 1990;15:50–6.Google Scholar
  42. 42.
    Sahin A. Turkiye’nin bazi Lathyrus turleri (L. rotundifolius Willd. subsp. miniatus (Bieb. ex Stev.) Davis, L. cassius Boiss., L. cicera L., L. aphaca L. var. modestus P.H. Davis)’ in karyotip analizleri. Turk J Bot. 1993;17:65–9.Google Scholar
  43. 43.
    Sahin A, Genc H, Bagci E. Cytotaxonomic investigation on some Lathyrus L. species growing in West Mediterranean and southern Aegean region-I. Acta Bot Hung. 1998;41(1–4):229–41.Google Scholar
  44. 44.
    Sahin A, Genc H, Bagci E. Cytotaxonomic investigations on some Lathyrus L. species growing in eastern Mediterranean and southern Aegean regions-II. Acta Bot Gallica. 2000;147(3):243–56.CrossRefGoogle Scholar
  45. 45.
    Sammour RH. Using electrophoretic techniques in varietal identification, biosystematic analysis, phylogenetic relations and genetic resources management. J Islam Acad Sci. 1991;4(3):221–6.Google Scholar
  46. 46.
    Sammour RH. Genetic diversity in Lathyrus sativus L. germplasm. Res Rev Biosci. 2013;8(9):325–36.Google Scholar
  47. 47.
    SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N, Zakharov D, Melake-Berhan A, Springer PS, Edwards KJ, Lee M, Avramova Z. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274:765–8.CrossRefGoogle Scholar
  48. 48.
    SanMiguel P, Gaut BS, Tikhonov A, Nakajima Y, Bennetzen JL. The paleontology of intergene retrotransposons of maize. Nat Genet. 1998;20:43–5.CrossRefGoogle Scholar
  49. 49.
    Senn HA. Experimental data for the revision of the genus Lathyrus. Am J Bot. 1938;25(2):67–78.CrossRefGoogle Scholar
  50. 50.
    Seijo JG, Fernandez A. Karyotype analysis and chromosome evolution in South American species of Lathyrus (Leguminosae). Am J Bot. 2003;90(7):980–7.CrossRefGoogle Scholar
  51. 51.
    Sharma AK, Datta PC. Application of improved technique in tracing Karyotype difference between strains of Lathyrus odoratus L. Cytologia. 1959;24(3):389–402.CrossRefGoogle Scholar
  52. 52.
    Sharma AK, Sharma A. Chromosome technique theory and practice. 3rd ed. London: Butter Worths; 1980.Google Scholar
  53. 53.
    Shan F, Yan G, Plummer JA. Karyotype evolution in the genus Boronia (Rutaceae). Bot J Linn Soc. 2003;142(3):309–20.CrossRefGoogle Scholar
  54. 54.
    Stace HM. Cytoevolution in the genus Calotis R. Br. (Compositae: Astereae). Aust J Bot. 1978;26(3):287–307.CrossRefGoogle Scholar
  55. 55.
    Stebbins GL. Chromosomal evolution in higher plants. London: Addison-Wisley Publishing Company; 1971.Google Scholar
  56. 56.
    Unal F. Giemsa C-banding distribution in three species of Lathyrus: L. amphicarpus L., L. articulatus L. and L. nissolia L. G U J Sci. 1999;2(2):325.Google Scholar
  57. 57.
    Vanzela ALL, Ruas PM, Marin-Morales MA. Karyotype studies of some species of Dalechampia Plum (Euphorbiaceae). Bot J Linn Soc. 1997;125(1):25–33.Google Scholar
  58. 58.
    Verma SC, Ohri D. Chromosome and nuclear phenotype in the legume Lathyrus sativus L. Cytologia. 1979;44(1):77–90.CrossRefGoogle Scholar
  59. 59.
    Watanabe K, King RM, Yahara T, Ito M, Yokoyama J, Suzuki T, Crawford DJ. Chromosomal cytology and evolution in Eupatorieae (Asteraceae). Ann Mo Bot Gard. 1995;82:581–92.CrossRefGoogle Scholar
  60. 60.
    Watanabe Y. Chromosome-mosaics observed in a variety of wheat, “Shirahada”. Jpn J Genet. 1962;37(3):194–206.CrossRefGoogle Scholar
  61. 61.
    Yamamoto K, Fujiwara T, Blumenreich ID. Karyotypes and morphological characteristics of some species in the genus Lathyrus L. Jpn J Breed. 1984;34(3):273–84.CrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2018

Authors and Affiliations

  • Kalyan Kumar De
    • 1
    Email author
  • Tuhin Pal
    • 1
  • Animesh Mondal
    • 1
  • Madhumita Majumder
    • 2
  • Animesh Ghorai
    • 3
  1. 1.Department of Botany, Hooghly Mohsin College (Estd. 1836)University of BurdwanChinsurah, HooghlyIndia
  2. 2.Raidighi CollegeDiamond Harbour, South 24-ParganasIndia
  3. 3.Department of BotanyNarasinha Dutt CollegeHowrahIndia

Personalised recommendations