Skip to main content
Log in

From chromosomes to genomes: new insights with emerging techniques

  • Review Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

The nucleus of every cell is arranged in a manner that reflects the cell’s functional identity. Its DNA loops around histones that help compact and regulate the local functional state. Various other proteins along with RNAs are arranged along the DNA. Barrier and insulator elements partition it into functional elements. Other proteins interact with their binding sites, recruit other factors, to enable the modifying of histones according to the functional state it must be in. Depending on this state, other proteins can facilitate transcription, repair, replication etc. To this end, the study of the spatial distribution of these proteins and RNAs is necessary to understand their functional relevance within the context of the nucleus. Here, we review various established and emerging techniques that enable such studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ashburner M, Roote J. Maintenance of a Drosophila laboratory: general procedures. CSH Protoc. 2007. https://doi.org/10.1101/pdb.ip35.

  2. Avery OT, Macleod CM, McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types. Inductions of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. J Exp Med. 1944;79(2):137–58.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bibikova M, Beumer K, Trautman JK, Carroll D. Enhancing gene targeting with designed zinc finger nucleases. Science. 2003;300(5620):764. https://doi.org/10.1126/science.1079512.

    CAS  PubMed  Google Scholar 

  4. Bohn M, Diesinger P, Kaufmann R, Weiland Y, Müller P, Gunkel M, et al. Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. Biophys J. 2010;99(5):1358–67. https://doi.org/10.1016/j.bpj.2010.05.043.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Buenrostro JD, Wu B, Chang HY, Greenleaf WJ. ATAC-seq: a method for assaying chromatin accessibility genome-wide. Curr Protoc Mol Biol. 2015;109:21.9.1-9. https://doi.org/10.1002/0471142727.mb2129s109.

    Google Scholar 

  6. Byrum SD, Raman A, Taverna SD, Tackett AJ. ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus. Cell Rep. 2012;2(1):198–205. https://doi.org/10.1016/j.celrep.2012.06.019.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cerase A, Pintacuda G, Tattermusch A, Avner P. Xist localization and function: new insights from multiple levels. Genome Biol. 2015;16:166. https://doi.org/10.1186/s13059-015-0733-y.

    PubMed  PubMed Central  Google Scholar 

  8. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li G-W, et al. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell. 2013;155(7):1479–91. https://doi.org/10.1016/j.cell.2013.12.001.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Chu C, Qu K, Zhong FL, Artandi SE, Chang HY. Genomic maps of long noncoding RNA occupancy reveal principles of RNA–chromatin interactions. Mol Cell. 2011;44(4):667–78. https://doi.org/10.1016/j.molcel.2011.08.027.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Cremer M, Grasser F, Lanctôt C, Müller S, Neusser M, Zinner R, et al. Multicolor 3D fluorescence in situ hybridization for imaging interphase chromosomes. Methods Mol Biol. 2008;463:205–39. https://doi.org/10.1007/978-1-59745-406-3_15.

    CAS  PubMed  Google Scholar 

  11. Dambournet D, Hong SH, Grassart A, Drubin DG. Tagging endogenous loci for live-cell fluorescence imaging and molecule counting using ZFNs, TALENs, and Cas9. Methods Enzymol. 2014;546:139–60. https://doi.org/10.1016/B978-0-12-801185-0.00007-6.

    CAS  PubMed  Google Scholar 

  12. Dejardin J, Kingston RE. Purification of proteins associated with specific genomic Loci. Cell. 2009;136(1):175–86. https://doi.org/10.1016/j.cell.2008.11.045.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dekker J, Rippe K, Dekker M, Kleckner N. Capturing chromosome conformation. Science. 2002;295(5558):1306–11. https://doi.org/10.1126/science.1067799.

    CAS  PubMed  Google Scholar 

  14. Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, et al. Chromatin architecture reorganization during stem cell differentiation. Nature. 2015;518(7539):331–6. https://doi.org/10.1038/nature14222.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Doncaster L. The mechanism of Mendelian heredity. Eugen Rev 1916;8(2):164–166.

    PubMed Central  Google Scholar 

  16. Dorn R, Szidonya J, Korge G, Sehnert M, Taubert H, Archoukieh E, et al. P transposon-induced dominant enhancer mutations of position-effect variegation in Drosophila melanogaster. Genetics. 1993;133(2):279–90.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Dostie J, Richmond TA, Arnaout RA, Selzer RR, Lee WL, Honan TA, et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 2006;16(10):1299–309. https://doi.org/10.1101/gr.5571506.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Engreitz JM, Haines JE, Perez EM, Munson G, Chen J, Kane M, et al. Local regulation of gene expression by lncRNA promoters, transcription and splicing. Nature. 2016;539(7629):452–5. https://doi.org/10.1038/nature20149.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Engreitz JM, Pandya-Jones A, McDonel P, Shishkin A, Sirokman K, Surka C, et al. The Xist lncRNA exploits three-dimensional genome architecture to spread across the X chromosome. Science. 2013;341(6147):1237973. https://doi.org/10.1126/science.1237973.

    PubMed  PubMed Central  Google Scholar 

  20. Fabre PJ, Leleu M, Mormann BH, Lopez-Delisle L, Noordermeer D, Beccari L, et al. Large scale genomic reorganization of topological domains at the HoxD locus. Genome Biol. 2017;18(1):149. https://doi.org/10.1186/s13059-017-1278-z.

    PubMed  PubMed Central  Google Scholar 

  21. Feng S-Y, Ota K, Yamada Y, Sawabu N, Ito T. A yeast one-hybrid system to detect methylation-dependent DNA–protein interactions. Biochem Biophys Res Commun. 2004;313(4):922–5. https://doi.org/10.1016/j.bbrc.2003.12.027.

    CAS  PubMed  Google Scholar 

  22. Franklin RE, Gosling RG. Molecular configuration in sodium thymonucleate. Nature. 1953;171(4356):740–1. https://doi.org/10.1038/171740a0.

    CAS  PubMed  Google Scholar 

  23. Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature. 2009;462(7269):58–64. https://doi.org/10.1038/nature08497.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Goryshin IY, Reznikoff WS. Tn5 in vitro transposition. J Biol Chem. 1998;273(13):7367–74. https://doi.org/10.1074/jbc.273.13.7367.

    CAS  PubMed  Google Scholar 

  25. Gustafsson MGL. Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Short communication. J Microsc. 2000;198(2):82–7. https://doi.org/10.1046/j.1365-2818.2000.00710.x.

    CAS  PubMed  Google Scholar 

  26. Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, et al. Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol. 2014;21(2):198–206. https://doi.org/10.1038/nsmb.2764.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Hell SW, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett. 1994;19(11):780–2. https://doi.org/10.1364/OL.19.000780.

    CAS  PubMed  Google Scholar 

  28. Hess ST, Girirajan TPK, Mason MD. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J. 2006;91(11):4258–72. https://doi.org/10.1529/biophysj.106.091116.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Jackson DA, Iborra FJ, Manders EM, Cook PR. Numbers and organization of RNA polymerases, nascent transcripts, and transcription units in HeLa nuclei. Mol Biol Cell. 1998;9(6):1523–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. James TC, Elgin SC. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol. 1986;6(11):3862–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Jäger R, Migliorini G, Henrion M, Kandaswamy R, Speedy HE, Heindl A, et al. Capture Hi-C identifies the chromatin interactome of colorectal cancer risk loci. Nat Commun. 2015;6:6178. https://doi.org/10.1038/ncomms7178.

    PubMed  Google Scholar 

  32. Kind J, Pagie L, de Vries SS, Nahidiazar L, Dey SS, Bienko M, et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell. 2015;163(1):134–47. https://doi.org/10.1016/j.cell.2015.08.040.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kohalmi SE, Kunz BA. Role of neighbouring bases and assessment of strand specificity in ethylmethanesulphonate and N-methyl-N′-nitro-N-nitrosoguanidine mutagenesis in the SUP4-o gene of Saccharomyces cerevisiae. J Mol Biol. 1988;204(3):561–8. https://doi.org/10.1016/0022-2836(88)90355-5.

    CAS  PubMed  Google Scholar 

  34. Koohy H, Down TA, Hubbard TJ. Chromatin accessibility data sets show bias due to sequence specificity of the DNase I enzyme. PLoS ONE. 2013;8(7):e69853. https://doi.org/10.1371/journal.pone.0069853.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Langer-Safer PR, Levine M, Ward DC. Immunological method for mapping genes on Drosophila polytene chromosomes. Proc Natl Acad Sci USA. 1982;79(14):4381–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Larsen BD, Madsen MR, Nielsen R, Mandrup S. Chromatin immunoprecipitation for identification of protein–DNA interactions in human cells. Methods Mol Biol. 2018;1794:335–52. https://doi.org/10.1007/978-1-4939-7871-7_24.

    CAS  PubMed  Google Scholar 

  37. Lewis EB. The phenomenon of position effect. Adv Genet 1950;3:73–115. https://doi.org/10.1016/S0065-2660(08)60083-8

    CAS  PubMed  Google Scholar 

  38. Lieb JD, Liu X, Botstein D, Brown PO. Promoter-specific binding of Rap1 revealed by genome-wide maps of protein–DNA association. Nat Genet. 2001;28(4):327–34. https://doi.org/10.1038/ng569.

    CAS  PubMed  Google Scholar 

  39. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289–93. https://doi.org/10.1126/science.1181369.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu X, Zhang Y, Chen Y, Li M, Shao Z, Zhang MQ, et al. CAPTURE: in situ analysis of chromatin composition of endogenous genomic loci by biotinylated dCas9. Curr Protoc Mol Biol. 2018. https://doi.org/10.1002/cpmb.64.

  41. Luo S, Lu J. Silencing of transposable elements by piRNAs in Drosophila: an evolutionary perspective. Genom Proteom Bioinform. 2017;15(3):164–76. https://doi.org/10.1016/j.gpb.2017.01.006.

    Google Scholar 

  42. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, et al. RNA-guided human genome engineering via Cas9. Science. 2013;339(6121):823–6. https://doi.org/10.1126/science.1232033.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Mavor JW. An effect of X rays on the linkage of mendelian characters in the first chromosome of Drosophila. Genetics. 1923;8(4):355–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol. 2011;29(2):143–8. https://doi.org/10.1038/nbt.1755.

    CAS  PubMed  Google Scholar 

  45. Muller HJ. Types of visible variations induced by X-rays in Drosophila. J Genet. 1930;22(3):299–334. https://doi.org/10.1007/BF02984195.

    Google Scholar 

  46. Nagano T, Lubling Y, Yaffe E, Wingett SW, Dean W, Tanay A, et al. Single-cell Hi-C for genome-wide detection of chromatin interactions that occur simultaneously in a single cell. Nat Protoc. 2015;10(12):1986–2003. https://doi.org/10.1038/nprot.2015.127.

    CAS  PubMed  Google Scholar 

  47. Nowoshilow S, Schloissnig S, Fei J-F, Dahl A, Pang AWC, Pippel M, et al. The axolotl genome and the evolution of key tissue formation regulators. Nature. 2018;554(7690):50–5. https://doi.org/10.1038/nature25458.

    CAS  PubMed  Google Scholar 

  48. Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988;120(3):621–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016;44(D1):D733–45. https://doi.org/10.1093/nar/gkv1189.

    PubMed  Google Scholar 

  50. Pennisi E. ENCODE project writes eulogy for junk DNA. Science. 2012;337(6099):1159–61. https://doi.org/10.1126/science.337.6099.1159.

    CAS  PubMed  Google Scholar 

  51. Podlevsky JD, Chen JJL. Evolutionary perspectives of telomerase RNA structure and function. RNA Biol. 2016;13(8):720–32. https://doi.org/10.1080/15476286.2016.1205768.

    PubMed  PubMed Central  Google Scholar 

  52. Port F, Chen H-M, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci USA. 2014;111(29):E2967–76. https://doi.org/10.1073/pnas.1405500111.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Reuter G, Dorn R, Wustmann G, Friede B, Rauh G. Third chromosome suppressor of position-effect variegation loci in Drosophila melanogaster. Mol Gen Genet. 1986;202(3):481–7. https://doi.org/10.1007/BF00333281.

    CAS  Google Scholar 

  54. Robertson G, Hirst M, Bainbridge M, Bilenky M, Zhao Y, Zeng T, et al. Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation and massively parallel sequencing. Nat Methods. 2007;4(8):651–7. https://doi.org/10.1038/nmeth1068.

    CAS  PubMed  Google Scholar 

  55. Rotem A, Ram O, Shoresh N, Sperling RA, Goren A, Weitz DA, et al. Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state. Nat Biotechnol. 2015;33(11):1165–72. https://doi.org/10.1038/nbt.3383.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 2010;20(6):761–70. https://doi.org/10.1101/gr.099655.109.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Schermelleh L, Carlton PM, Haase S, Shao L, Winoto L, Kner P, et al. Subdiffraction multicolor imaging of the nuclear periphery with 3D structured illumination microscopy. Science. 2008;320(5881):1332–6. https://doi.org/10.1126/science.1156947.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Schmitt AD, Hu M, Ren B. Genome-wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell Biol. 2016;17(12):743–55. https://doi.org/10.1038/nrm.2016.104.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Shahi P, Kim SC, Haliburton JR, Gartner ZJ, Abate AR. Abseq: ultrahigh-throughput single cell protein profiling with droplet microfluidic barcoding. Sci Rep. 2017;7:44447. https://doi.org/10.1038/srep44447.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Simon JM, Giresi PG, Davis IJ, Lieb JD. Using formaldehyde-assisted isolation of regulatory elements (FAIRE) to isolate active regulatory DNA. Nat Protoc. 2012;7(2):256–67. https://doi.org/10.1038/nprot.2011.444.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Simon MD, Pinter SF, Fang R, Sarma K, Rutenberg-Schoenberg M, Bowman SK, et al. High-resolution Xist binding maps reveal two-step spreading during X-chromosome inactivation. Nature. 2013;504(7480):465–9. https://doi.org/10.1038/nature12719.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sinha RP, Häder DP. UV-induced DNA damage and repair: a review. Photochem Photobiol Sci. 2002;1(4):225–36. https://doi.org/10.1039/b201230h.

    CAS  PubMed  Google Scholar 

  63. Song F, Chen P, Sun D, Wang M, Dong L, Liang D, et al. Cryo-EM study of the chromatin fiber reveals a double helix twisted by tetranucleosomal units. Science. 2014;344(6182):376–80. https://doi.org/10.1126/science.1251413.

    CAS  PubMed  Google Scholar 

  64. Song L, Crawford GE. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb Protoc. 2010. https://doi.org/10.1101/pdb.prot5384.

  65. Srivastava S, Dhawan J, Mishra RK. Epigenetic mechanisms and boundaries in the regulation of mammalian Hox clusters. Mech Dev. 2015;138(Pt 2):160–9. https://doi.org/10.1016/j.mod.2015.07.015.

    CAS  PubMed  Google Scholar 

  66. Srivastava S, Puri D, Garapati HS, Dhawan J, Mishra RK. Vertebrate GAGA factor associated insulator elements demarcate homeotic genes in the HOX clusters. Epigenetics Chromatin. 2013;6(1):8. https://doi.org/10.1186/1756-8935-6-8.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Srivastava S, Sowpati DT, Garapati HS, Puri D, Dhawan J, Mishra RK. A ChIP-on-chip tiling array approach detects functional histone-free regions associated with boundaries at vertebrate HOX genes. Genom Data. 2014;2:78–81. https://doi.org/10.1016/j.gdata.2014.05.001.

    PubMed  PubMed Central  Google Scholar 

  68. van Steensel B, Henikoff S. Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol. 2000;18(4):424–8. https://doi.org/10.1038/74487.

    PubMed  Google Scholar 

  69. Thibault ST, Singer MA, Miyazaki WY, Milash B, Dompe NA, Singh CM, et al. A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat Genet. 2004;36(3):283–7. https://doi.org/10.1038/ng1314.

    CAS  PubMed  Google Scholar 

  70. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010;11(9):636–46. https://doi.org/10.1038/nrg2842.

    CAS  PubMed  Google Scholar 

  71. Wang X, Fang X, Yang P, Jiang X, Jiang F, Zhao D, et al. The locust genome provides insight into swarm formation and long-distance flight. Nat Commun. 2014;5:2957. https://doi.org/10.1038/ncomms3957.

    PubMed  Google Scholar 

  72. Watson JD, Crick FH. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953;171(4356):737–8. https://doi.org/10.1038/171737a0.

    CAS  PubMed  Google Scholar 

  73. Wen L, Tang F. Single cell epigenome sequencing technologies. Mol Aspects Med. 2018;59:62–9. https://doi.org/10.1016/j.mam.2017.09.002.

    CAS  PubMed  Google Scholar 

  74. Wilkins MHF, Stokes AR, Wilson HR. Molecular structure of deoxypentose nucleic acids. Nature. 1953;171(4356):738–40.

    CAS  PubMed  Google Scholar 

  75. Woodcock CLF, Safer JP, Stanchfield JE. Structural repeating units in chromatin. Exp Cell Res. 1976;97(1):101–10. https://doi.org/10.1016/0014-4827(76)90659-5.

    CAS  PubMed  Google Scholar 

  76. Wu X-S, Wang F, Li H-F, Hu Y-P, Jiang L, Zhang F, et al. LncRNA-PAGBC acts as a microRNA sponge and promotes gallbladder tumorigenesis. EMBO Rep. 2017;18(10):1837–53. https://doi.org/10.15252/embr.201744147.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Zaret K. Micrococcal nuclease analysis of chromatin structure. Curr Protoc Mol Biol. 2005. https://doi.org/10.1002/0471142727.mb2101s69.

  78. Zessin PJM, Finan K, Heilemann M. Super-resolution fluorescence imaging of chromosomal DNA. J Struct Biol. 2012;177(2):344–8. https://doi.org/10.1016/j.jsb.2011.12.015.

    CAS  PubMed  Google Scholar 

  79. Zhao Z, Tavoosidana G, Sjölinder M, Göndör A, Mariano P, Wang S, et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat Genet. 2006;38(11):1341–7. https://doi.org/10.1038/ng1891.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

TP acknowledges the Council of Scientific and Industrial Research (CSIR) for doctoral fellowship and RKM acknowledges the financial support of the CSIR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh K. Mishra.

Additional information

This article is dedicated in memory of Profs AK Sharma and Archana Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ponrathnam, T., Mishra, R.K. From chromosomes to genomes: new insights with emerging techniques. Nucleus 61, 227–234 (2018). https://doi.org/10.1007/s13237-018-0242-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-018-0242-y

Keywords

Navigation