The Nucleus

, Volume 61, Issue 1, pp 19–27 | Cite as

Molecular analysis of genetic diversity and population structure in Everniastrum cirrhatum (Fr.) Hale (Parmeliaceae) in India

  • Niraj Singh
  • Rohit K. Verma
  • Narender Kumar
  • Rajesh Bajpai
  • Dalip K. Upreti
  • Tikam S. Rana
Original Article
  • 47 Downloads

Abstract

Everniastrum cirrhatum is a medicinally important lichen used in Ayurvedic and Unani systems of medicine. In the present study, DAMD and ISSR methods were used to estimate the genetic variation and population structure of E. cirrhatum collected from different geographical regions of India. Four DAMD and ten ISSR primers detected 42 and 110 polymorphic bands and accounted for 95.65 and 94.24% polymorphisms, respectively. Cumulative band data generated for DAMD and ISSR markers resulted into 94.95% polymorphism across all the accessions of E. cirrhatum. The UPGMA dendrogram showed two major clusters. The clustering pattern in the UPGMA dendrogram revealed that the groupings are largely in congruence with the geographical distribution of the accessions. Clustering patterns in STRUCTURE revealed that geographical diversity is perfectly in congruence with the genetic diversity. The clustering pattern in STRUCTURE was also supported by PCoA. Mantel test for matrix correlation showed a weak but positive correlation between genetic and geographical distance. The hierarchical analysis of molecular variance revealed that maximum percentage of variation was found within a population (57%), followed by among regions (28%) and among populations (15%). The present study provides significant insight into the genetic variability and population structure of E. cirrhatum. Understanding population structure would provide baseline information for developing its sustainable management strategies. It would also be important to conserve populations of E. cirrhatum in different localities of the Himalayan regions to prevent population decline caused by anthropogenic and environmental stochastic effects.

Keywords

DAMD DNA marker Genetic variations ISSR Molecular tools 

Notes

Acknowledgements

The study was financially supported by the Department of Biotechnology, New Delhi (No. BT/PR1457/39/204/2011).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Supplementary material

13237_2017_219_MOESM1_ESM.pptx (54 kb)
Fig. S1 Principal coordinate analysis (PCoA) based on the multilocus genotype. The percentage of the total variability explained by the first two components is 52.61% (Coord.1) and 13.32% (Coord.2). Each symbol represents a single population from one of the eight studied populations. Information on each population is provided in Table 1. (PPTX 53 kb)

References

  1. 1.
    Bayraktar H, Dolar FS, Maden S. Use of RAPD and ISSR markers in detection of genetic variation and population structure among Fusarium oxysporum Fr. sp. ciceris isolates on chickpea in Turkey. J Phytopathol. 2008;156:146–54.CrossRefGoogle Scholar
  2. 2.
    Botstein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet. 1980;32:314–31.PubMedPubMedCentralGoogle Scholar
  3. 3.
    Chandra S, Singh A. A lichen crude drug (Chharila) from India. J Res Educ Indian Med. 1971;6:209–15.Google Scholar
  4. 4.
    Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.CrossRefPubMedGoogle Scholar
  5. 5.
    Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics. 2003;164:1567–87.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Frankham R. Quantitative genetics in conservation biology. Genet Res. 1999;74:237–44.CrossRefPubMedGoogle Scholar
  7. 7.
    Frankham R. Relationship of genetic variation to population size in wildlife. Conserv Biol. 1996;10:1500–8.CrossRefGoogle Scholar
  8. 8.
    Gargouri S, Bernier L, Hajlaoui MR, Marrakchi M. Genetic variability and population structure of the wheat foot rot fungus, Fusarium culmorum, in Tunisia. Eur J Plant Pathol. 2003;109:807–15.CrossRefGoogle Scholar
  9. 9.
    Grube M, Hawksworth DL. Trouble with lichen: the evaluation and re-interpretation of thallus form and fruit body types in the molecular era. Mycol Res. 2007;111:1116–32.CrossRefPubMedGoogle Scholar
  10. 10.
    Heath DD, Iwama GK, Devlin RH. PCR primed with the VNTR core sequences yields species specific patterns and hypervariable probes. Nucl Acids Res. 1993;21:5782–5.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Honegger R, Zippler U. Mating system in representatives of Parmeliaceae, Ramalinaceae and Physciaceae (Lecanoromycetes, lichen-forming ascomycetes). Mycol Res. 2007;111:424–32.CrossRefPubMedGoogle Scholar
  12. 12.
    Hu J-B, Li J-W, Wang L-J, Liu L-J, Si S-W. Utilization of a set of high-polymorphism DAMD markers for genetic analysis of a cucumber germplasm collection. Acta Physiol Plant. 2011;33:227–31.CrossRefGoogle Scholar
  13. 13.
    Lande R. Genetics and demography in biological conservation. Science. 1988;241:1455–60.CrossRefPubMedGoogle Scholar
  14. 14.
    Mishra PK, Tewari JP, Clear RM, Turkington KT. Molecular genetic variation and geographical structuring in Fusarium graminearum. Ann Appl Biol. 2004;145:299–307.CrossRefGoogle Scholar
  15. 15.
    Murtagh GJ, Dyer PS, Furneaux PA, Crittenden PD. Molecular and physiological diversity in the bipolar lichen-forming fungus Xanthoria elegans. Mycol Res. 2002;106:1277–86.CrossRefGoogle Scholar
  16. 16.
    Nadkarni KM. Indian materia medica. Mumbai: Popular prakashan; 1996.Google Scholar
  17. 17.
    Nash TH III, Ryan BD, Gries C, Bungartz F. Lichen flora of the greater Sonoran desert region, vol I. Lichens unlimited. Tempe: Arizona State University; 2002.Google Scholar
  18. 18.
    Otalora MAG, Belinchon R, Prieto M, Aragon G, Izquierdo P, Martinez I. The threatened lichen Lobaria pulmonaria in the Iberian Peninsula: genetic diversity and structure across a latitudinal gradient. Fungal Biol. 2015;119:802–11.CrossRefPubMedGoogle Scholar
  19. 19.
    Page RDM. TreeView (Win32), Ver. 1.6.5; 2001. Available from: http://taxonomy.zoology.gla.ac.uk/rod/treeview.html.
  20. 20.
    Pavlicek A, Hrda S, Flegr J. Free tree—freeware program for construction of phylogenetic trees on the basis of distance data and bootstrapping/jackknife analysis of the tree robustness. Application in the RAPD analysis of the genus Frenkelia. Fol Biol (Praha). 1999;45:97–9.Google Scholar
  21. 21.
    Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28:2537–9.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Powell W, Morgante M, Andre C, Hanafey M, Vogel J, Tingey S, et al. The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Mol Breed. 1996;2:225–38.CrossRefGoogle Scholar
  23. 23.
    Prevost A, Wilkinson MJ. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet. 1999;98:107–12.CrossRefGoogle Scholar
  24. 24.
    Printzen C, Lumbsch HT, Schmitt I, Feige GB. A study on the genetic variability of Biatora helvola using RAPD markers. Lichenologist. 1999;31:491–9.CrossRefGoogle Scholar
  25. 25.
    Printzen C. Fungal specific primers for PCR-amplification of mitochondrial LSU in lichens. Mol Ecol Res. 2002;2:130–2.Google Scholar
  26. 26.
    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Singh N, Bajpai R, Mahar KS, Tiwari V, Upreti DK, Rana TS. ISSR and DAMD markers revealed high genetic variability within Flavoparmelia caperata in Western Himalaya (India). Physiol Mol Biol Plants. 2014;20:501–8.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sipman HJM. Studies on Colombian cryptogams. X. The genus Everniastrum Hale and related taxa (Lichens). Proc K Ned Akad van Wet C. 1980;83:333–54.Google Scholar
  29. 29.
    Tymon MA, Pell JK. ISSR, ERIC and RAPD techniques to detect genetic diversity in the aphid pathogen Pandora neoaphidis. Mycol Res. 2005;109:285–93.CrossRefPubMedGoogle Scholar
  30. 30.
    Velez P, Quintero CA, Merino G, Gasca-Pineda J, González MC. An ISSR-based approach to assess genetic diversity in the marine arenicolous fungus Corollospora maritima sensu lato. Mycoscience. 2016;3:187–95.CrossRefGoogle Scholar
  31. 31.
    Wieczorek A, Achrem M, Mitka JR, Rogalski M, Werczynska K. Genetic variability of the populations of Zwackhia viridis (ach.) poetsch and schied (lecanographaceae, lichenized ascomycetes) in the eastern poland: geographic versus habitat distance. Pol J Ecol. 2014;62:253–61.CrossRefGoogle Scholar
  32. 32.
    Yuzbasioglu E, Halici MG, Karabacak M, Aksoy A. RAPD and ISSR markers indicate high genetic variation within Lobathallia radiosa in Turkey. Mycol Prog. 2011;10:219–28.CrossRefGoogle Scholar
  33. 33.
    Zoller S, Lutzoni F, Scheidegger C. Genetic variation within and among populations of the threatened lichen Lobaria pulmonaria in Switzerland and implications for its conservation. Mol Ecol. 1999;8:2049–59.CrossRefPubMedGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2017

Authors and Affiliations

  • Niraj Singh
    • 1
  • Rohit K. Verma
    • 1
  • Narender Kumar
    • 1
    • 2
  • Rajesh Bajpai
    • 3
  • Dalip K. Upreti
    • 3
  • Tikam S. Rana
    • 1
  1. 1.Molecular Systematics LaboratoryCSIR-National Botanical Research InstituteLucknowIndia
  2. 2.Academy of Scientific and Innovative Research (AcSIR)New DelhiIndia
  3. 3.Lichenology LaboratoryCSIR-National Botanical Research InstituteLucknowIndia

Personalised recommendations