The Nucleus

, Volume 61, Issue 1, pp 55–60 | Cite as

Assessments of genetic diversity in Iranian flax populations using retrotransposon microsatellite amplification polymorphisms (REMAP) markers

  • Hadi Habibollahi
  • Zahra Noormohammadi
  • Masoud Sheidai
  • Farah Farahani
  • Seyed Mehdi Talebi
  • Elham Torabizadeh
Original Article
  • 68 Downloads

Abstract

Flax (Linum usitatissimum L., 2n = 30), is an annual self-pollinated crop. It is used in oil and fiber industries, and also valued for pharmaceutical and nutraceutical applications. Characterization of flax gene pool and evaluation of genetic diversity are crucial for germplasm conservation and breeding. In present study, eighteen retrotransposon microsatellite amplified polymorphism markers were used to evaluate the genetic diversity of cultivated flax within and among populations. Thirty samples of flax plants from three different climates and geographic regions in Iran were used for present investigation. Analysis of molecular variance test showed significant genetic difference (PhiPT = 0.595, P = 0.001) among the studied populations in L. usitatissimum. 41% of total genetic variability was due to within population diversity, whereas 59% was due to among population genetic differentiation. The PCoA plot and cluster analysis grouped plants of Saveh population in a cluster entirely separated from the other two populations and showed high genetic affinity between the two Shiraz and Orumieh populations. STRUCTURE plot identified two distinct gene pools for flax, so that the population of Saveh is different from other populations, but some degree of shared alleles occurred between them.

Keywords

Flax Genetic variability Germplasm REMAP Gene flow 

Notes

Acknowledgements

We gratefully acknowledge Mr. Reza Assareh and Mrs. Bahareh Ghasemzadeh for their aids in Science and Research Branch of Islamic Azad University and Shahid Beheshti University.

References

  1. 1.
    Bickel CL, Gadani S, Lukacs M, Cullis CA. SSR markers developed for genetic mapping in flax (Linum usitatissimum L.). Res Rep Biol. 2011;2:23–9.Google Scholar
  2. 2.
    Biswas MK, Xu Q, Deng XX. Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Sci Hort. 2010;124:254–61.CrossRefGoogle Scholar
  3. 3.
    Caliński T, Harabasz J. A dendrite method for cluster analysis. Commun Stat Theory Methods. 1974;3:1–27.CrossRefGoogle Scholar
  4. 4.
    Chen HH, Xu SY, Wang Z. Gelation properties of flaxseed gum. J Food Eng. 2006;77:295–303.CrossRefGoogle Scholar
  5. 5.
    Cloutier S, Miranda E, Ward K, Radovanovic N, Reimer E, Walichnowski A, et al. Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.). Theor Appl Genet. 2012;125:685–94.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Cullis CA. Mechanisms and control of rapid genomic changes in flax. Ann Bot. 2005;95:201–6.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Deng X, Long S, He D, Li X, Wang Y, Hao D, et al. Isolation and characterization of polymorphic microsatellite markers from flax (Linum usitatissimum L.). Afr J Biotechnol. 2011;10:734–9.Google Scholar
  8. 8.
    Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.CrossRefPubMedGoogle Scholar
  9. 9.
    Flavell AJ, Smith DB, Kumar A. Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet. 1992;231:233–42.PubMedGoogle Scholar
  10. 10.
    Freeland JR, Kirk H, Peterson SD. Molecular ecology. Hoboken: Wiley; 2011. p. 449.CrossRefGoogle Scholar
  11. 11.
    Fu YB. Redundancy and distinctness in flax germplasm as revealed by RAPD dissimilarity. Plant Genet Resour. 2006;4:117–24.CrossRefGoogle Scholar
  12. 12.
    González LG, Deyholos MK. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome. BMC Genom. 2012;13:644.CrossRefGoogle Scholar
  13. 13.
    Grandbastien MA, Lucas H, Morel JB, Mhiri C, Vernhettes S, Casacuberta JM. The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica. 1997;100:241–52.CrossRefPubMedGoogle Scholar
  14. 14.
    Habibollahi H, Noormohammadi Z, Sheidai M, Farahani F. SSR and EST-SSR-based population genetic structure of Linum L. (Linaceae) species in Iran. Genet Resour Crop Evol. 2016;63:1127–38.CrossRefGoogle Scholar
  15. 15.
    Habibollahi H, Noormohammadi Z, Sheidai M, Farahani F. Genetic structure of cultivated flax (Linum usitatissimum L.) based on retrotransposon-based markers. Genetika. 2015;47:1111–22.CrossRefGoogle Scholar
  16. 16.
    Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.CrossRefPubMedGoogle Scholar
  17. 17.
    Hutchison DW, Templeton AR. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution. 1999;53:1898–914.CrossRefPubMedGoogle Scholar
  18. 18.
    Jenab M, Thompson LU. The influence of flaxseed and lignans on colon carcinogenesis and β-glucuronidase activity. Carcinogenesis. 1996;17:1343–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Kalendar R, Schulman AH. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc. 2006;1:2478–84.CrossRefPubMedGoogle Scholar
  20. 20.
    Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet. 1999;98:704–11.CrossRefGoogle Scholar
  21. 21.
    Križman M, Jakše J, Baričevič D, Javornik B, Prošek M. Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agric Slov. 2006;87:427–33.Google Scholar
  22. 22.
    Leigh F, Kalendar R, Lea V, Lee D, Donini P, Schulman AH. Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol Genet Genomics. 2003;269:464–74.CrossRefPubMedGoogle Scholar
  23. 23.
    Meirmans PG. AMOVA-based clustering of population genetic data. J Hered. 2012;103:744–50.CrossRefPubMedGoogle Scholar
  24. 24.
    Meirmans PG, Van Tienderen PH. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes. 2004;4:792–4.CrossRefGoogle Scholar
  25. 25.
    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.PubMedPubMedCentralGoogle Scholar
  26. 26.
    Provan J, Thomas WT, Forster BP, Powell W. Copia-SSR: a simple marker technique which can be used on total genomic DNA. Genome. 1999;42:363–6.CrossRefGoogle Scholar
  27. 27.
    SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274:765.CrossRefPubMedGoogle Scholar
  28. 28.
    Setsuko S, Ishida K, Ueno S, Tsumura Y, Tomaru N. Population differentiation and gene flow within a metapopulation of a threatened tree, Magnolia stellata (Magnoliaceae). Am J Bot. 2007;94:128–36.CrossRefPubMedGoogle Scholar
  29. 29.
    Sheidai M, Afshar F, Keshavarzi M, Talebi SM, Noormohammadi Z, Shafaf T. Genetic diversity and genome size variability in Linum austriacum (Lineaceae) populations. Biochem Sys Ecol. 2014;57:20–6.CrossRefGoogle Scholar
  30. 30.
    Sheidai M, Seif E, Nouroozi M, Noormohammadi Z. Cytogenetic and molecular diversity of Cirsium arvense (Asteraceae) populations in Iran. J Jpn Bot. 2012;87:193–205.Google Scholar
  31. 31.
    Sheidai M, Zanganeh S, Haji-Ramezanali R, Nouroozi M, Noormohammadi Z, Ghsemzadeh-Baraki S. Genetic diversity and population structure in four Cirsium (Asteraceae) species. Biologia. 2013;68:384–97.CrossRefGoogle Scholar
  32. 32.
    Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 2000;10:908–15.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Smýkal P, Bačová-Kerteszová N, Kalendar R, Corander J, Schulman AH, Pavelek M. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet. 2011;122:1385–97.CrossRefPubMedGoogle Scholar
  34. 34.
    Soto-Cerda BJ, Maureira-Butler I, Muñoz G, Rupayan A, Cloutier S. SSR-based population structure, molecular diversity and linkage disequilibrium analysis of a collection of flax (Linum usitatissimum L.) varying for mucilage seed-coat content. Mol Breed. 2012;30:875–88.CrossRefGoogle Scholar
  35. 35.
    Soto-Cerda BJ, Carrasco RA, Aravena GA, Urbina HA, Navarro CS. Identifying novel polymorphic microsatellites from cultivated flax (Linum usitatissimum L.) following data mining. Plant Mol Biol Rep. 2011;29:753–9.CrossRefGoogle Scholar
  36. 36.
    Suoniemi A, Tanskanen J, Schulman AH. Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J. 1998;13:699–705.CrossRefPubMedGoogle Scholar
  37. 37.
    Van Zeist W, Bakker-Heeres JA. Evidence for linseed cultivation before 6000 BC. J Archaeol Sci. 1975;2:215–9.CrossRefGoogle Scholar
  38. 38.
    Voytas DF, Cummings MP, Koniczny A, Ausubel FM, Rodermel SR. Copia-like retrotransposons are ubiquitous among plants. Proc Nat Acad Sci. 1992;89:7124–8.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012;72:461–73.CrossRefPubMedGoogle Scholar
  40. 40.
    Zohary D, Pulses Hopf M. Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford: Oxford Press; 2000. p. 316.Google Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2017

Authors and Affiliations

  1. 1.Department of BiologyIslamic Azad UniversityRashtIran
  2. 2.Department of Biology, Science and Research BranchIslamic Azad UniversityTehranIran
  3. 3.Faculty of Biological SciencesShahid Beheshti UniversityTehranIran
  4. 4.Department of MicrobiologyIslamic Azad UniversityQomIran
  5. 5.Department of Biology, Faculty of SciencesArak UniversityArakIran

Personalised recommendations