Skip to main content
Log in

Assessments of genetic diversity in Iranian flax populations using retrotransposon microsatellite amplification polymorphisms (REMAP) markers

  • Original Article
  • Published:
The Nucleus Aims and scope Submit manuscript

Abstract

Flax (Linum usitatissimum L., 2n = 30), is an annual self-pollinated crop. It is used in oil and fiber industries, and also valued for pharmaceutical and nutraceutical applications. Characterization of flax gene pool and evaluation of genetic diversity are crucial for germplasm conservation and breeding. In present study, eighteen retrotransposon microsatellite amplified polymorphism markers were used to evaluate the genetic diversity of cultivated flax within and among populations. Thirty samples of flax plants from three different climates and geographic regions in Iran were used for present investigation. Analysis of molecular variance test showed significant genetic difference (PhiPT = 0.595, P = 0.001) among the studied populations in L. usitatissimum. 41% of total genetic variability was due to within population diversity, whereas 59% was due to among population genetic differentiation. The PCoA plot and cluster analysis grouped plants of Saveh population in a cluster entirely separated from the other two populations and showed high genetic affinity between the two Shiraz and Orumieh populations. STRUCTURE plot identified two distinct gene pools for flax, so that the population of Saveh is different from other populations, but some degree of shared alleles occurred between them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bickel CL, Gadani S, Lukacs M, Cullis CA. SSR markers developed for genetic mapping in flax (Linum usitatissimum L.). Res Rep Biol. 2011;2:23–9.

    CAS  Google Scholar 

  2. Biswas MK, Xu Q, Deng XX. Utility of RAPD, ISSR, IRAP and REMAP markers for the genetic analysis of Citrus spp. Sci Hort. 2010;124:254–61.

    Article  CAS  Google Scholar 

  3. Caliński T, Harabasz J. A dendrite method for cluster analysis. Commun Stat Theory Methods. 1974;3:1–27.

    Article  Google Scholar 

  4. Chen HH, Xu SY, Wang Z. Gelation properties of flaxseed gum. J Food Eng. 2006;77:295–303.

    Article  CAS  Google Scholar 

  5. Cloutier S, Miranda E, Ward K, Radovanovic N, Reimer E, Walichnowski A, et al. Simple sequence repeat marker development from bacterial artificial chromosome end sequences and expressed sequence tags of flax (Linum usitatissimum L.). Theor Appl Genet. 2012;125:685–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Cullis CA. Mechanisms and control of rapid genomic changes in flax. Ann Bot. 2005;95:201–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Deng X, Long S, He D, Li X, Wang Y, Hao D, et al. Isolation and characterization of polymorphic microsatellite markers from flax (Linum usitatissimum L.). Afr J Biotechnol. 2011;10:734–9.

    CAS  Google Scholar 

  8. Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.

    Article  CAS  PubMed  Google Scholar 

  9. Flavell AJ, Smith DB, Kumar A. Extreme heterogeneity of Ty1-copia group retrotransposons in plants. Mol Gen Genet. 1992;231:233–42.

    CAS  PubMed  Google Scholar 

  10. Freeland JR, Kirk H, Peterson SD. Molecular ecology. Hoboken: Wiley; 2011. p. 449.

    Book  Google Scholar 

  11. Fu YB. Redundancy and distinctness in flax germplasm as revealed by RAPD dissimilarity. Plant Genet Resour. 2006;4:117–24.

    Article  Google Scholar 

  12. González LG, Deyholos MK. Identification, characterization and distribution of transposable elements in the flax (Linum usitatissimum L.) genome. BMC Genom. 2012;13:644.

    Article  Google Scholar 

  13. Grandbastien MA, Lucas H, Morel JB, Mhiri C, Vernhettes S, Casacuberta JM. The expression of the tobacco Tnt1 retrotransposon is linked to plant defense responses. Genetica. 1997;100:241–52.

    Article  CAS  PubMed  Google Scholar 

  14. Habibollahi H, Noormohammadi Z, Sheidai M, Farahani F. SSR and EST-SSR-based population genetic structure of Linum L. (Linaceae) species in Iran. Genet Resour Crop Evol. 2016;63:1127–38.

    Article  CAS  Google Scholar 

  15. Habibollahi H, Noormohammadi Z, Sheidai M, Farahani F. Genetic structure of cultivated flax (Linum usitatissimum L.) based on retrotransposon-based markers. Genetika. 2015;47:1111–22.

    Article  Google Scholar 

  16. Huson DH, Bryant D. Application of phylogenetic networks in evolutionary studies. Mol Biol Evol. 2006;23:254–67.

    Article  CAS  PubMed  Google Scholar 

  17. Hutchison DW, Templeton AR. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evolution. 1999;53:1898–914.

    Article  PubMed  Google Scholar 

  18. Jenab M, Thompson LU. The influence of flaxseed and lignans on colon carcinogenesis and β-glucuronidase activity. Carcinogenesis. 1996;17:1343–8.

    Article  CAS  PubMed  Google Scholar 

  19. Kalendar R, Schulman AH. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc. 2006;1:2478–84.

    Article  CAS  PubMed  Google Scholar 

  20. Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A. IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet. 1999;98:704–11.

    Article  CAS  Google Scholar 

  21. Križman M, Jakše J, Baričevič D, Javornik B, Prošek M. Robust CTAB-activated charcoal protocol for plant DNA extraction. Acta Agric Slov. 2006;87:427–33.

    Google Scholar 

  22. Leigh F, Kalendar R, Lea V, Lee D, Donini P, Schulman AH. Comparison of the utility of barley retrotransposon families for genetic analysis by molecular marker techniques. Mol Genet Genomics. 2003;269:464–74.

    Article  CAS  PubMed  Google Scholar 

  23. Meirmans PG. AMOVA-based clustering of population genetic data. J Hered. 2012;103:744–50.

    Article  PubMed  Google Scholar 

  24. Meirmans PG, Van Tienderen PH. GENOTYPE and GENODIVE: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes. 2004;4:792–4.

    Article  Google Scholar 

  25. Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Provan J, Thomas WT, Forster BP, Powell W. Copia-SSR: a simple marker technique which can be used on total genomic DNA. Genome. 1999;42:363–6.

    Article  CAS  Google Scholar 

  27. SanMiguel P, Tikhonov A, Jin YK, Motchoulskaia N. Nested retrotransposons in the intergenic regions of the maize genome. Science. 1996;274:765.

    Article  CAS  PubMed  Google Scholar 

  28. Setsuko S, Ishida K, Ueno S, Tsumura Y, Tomaru N. Population differentiation and gene flow within a metapopulation of a threatened tree, Magnolia stellata (Magnoliaceae). Am J Bot. 2007;94:128–36.

    Article  CAS  PubMed  Google Scholar 

  29. Sheidai M, Afshar F, Keshavarzi M, Talebi SM, Noormohammadi Z, Shafaf T. Genetic diversity and genome size variability in Linum austriacum (Lineaceae) populations. Biochem Sys Ecol. 2014;57:20–6.

    Article  CAS  Google Scholar 

  30. Sheidai M, Seif E, Nouroozi M, Noormohammadi Z. Cytogenetic and molecular diversity of Cirsium arvense (Asteraceae) populations in Iran. J Jpn Bot. 2012;87:193–205.

    Google Scholar 

  31. Sheidai M, Zanganeh S, Haji-Ramezanali R, Nouroozi M, Noormohammadi Z, Ghsemzadeh-Baraki S. Genetic diversity and population structure in four Cirsium (Asteraceae) species. Biologia. 2013;68:384–97.

    Article  Google Scholar 

  32. Shirasu K, Schulman AH, Lahaye T, Schulze-Lefert P. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 2000;10:908–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Smýkal P, Bačová-Kerteszová N, Kalendar R, Corander J, Schulman AH, Pavelek M. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet. 2011;122:1385–97.

    Article  PubMed  Google Scholar 

  34. Soto-Cerda BJ, Maureira-Butler I, Muñoz G, Rupayan A, Cloutier S. SSR-based population structure, molecular diversity and linkage disequilibrium analysis of a collection of flax (Linum usitatissimum L.) varying for mucilage seed-coat content. Mol Breed. 2012;30:875–88.

    Article  Google Scholar 

  35. Soto-Cerda BJ, Carrasco RA, Aravena GA, Urbina HA, Navarro CS. Identifying novel polymorphic microsatellites from cultivated flax (Linum usitatissimum L.) following data mining. Plant Mol Biol Rep. 2011;29:753–9.

    Article  Google Scholar 

  36. Suoniemi A, Tanskanen J, Schulman AH. Gypsy-like retrotransposons are widespread in the plant kingdom. Plant J. 1998;13:699–705.

    Article  CAS  PubMed  Google Scholar 

  37. Van Zeist W, Bakker-Heeres JA. Evidence for linseed cultivation before 6000 BC. J Archaeol Sci. 1975;2:215–9.

    Article  Google Scholar 

  38. Voytas DF, Cummings MP, Koniczny A, Ausubel FM, Rodermel SR. Copia-like retrotransposons are ubiquitous among plants. Proc Nat Acad Sci. 1992;89:7124–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang Z, Hobson N, Galindo L, Zhu S, Shi D, McDill J, et al. The genome of flax (Linum usitatissimum) assembled de novo from short shotgun sequence reads. Plant J. 2012;72:461–73.

    Article  PubMed  Google Scholar 

  40. Zohary D, Pulses Hopf M. Domestication of plants in the old world: the origin and spread of cultivated plants in West Asia, Europe, and the Nile Valley. Oxford: Oxford Press; 2000. p. 316.

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Mr. Reza Assareh and Mrs. Bahareh Ghasemzadeh for their aids in Science and Research Branch of Islamic Azad University and Shahid Beheshti University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Habibollahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibollahi, H., Noormohammadi, Z., Sheidai, M. et al. Assessments of genetic diversity in Iranian flax populations using retrotransposon microsatellite amplification polymorphisms (REMAP) markers. Nucleus 61, 55–60 (2018). https://doi.org/10.1007/s13237-017-0218-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13237-017-0218-3

Keywords

Navigation