The Nucleus

, Volume 61, Issue 1, pp 45–53 | Cite as

Genetic diversity analysis using RAPD and ISSR markers revealed discrete genetic makeup in relation to fibre and oil content in Linum usitatissimum L. genotypes

  • Arpna Kumari
  • Satish Paul
  • Vikas Sharma
Original Article


Flax is an important commercial crop yielding oil, fibre and medicinal products. Present study reports the genetic diversity analysis in a collection of 28 genotypes of flax, including 9 exotic lines. Randomly amplified polymorphic DNA and inter-simple sequence repeat markers were used to study the genetic diversity. The characterized genotypes showed high level of genetic variation with respect to oil and fibre contents of genotypes. Altogether, 27 markers amplified 130 fragments with an average of 4.8 fragments and mean polymorphism information content and marker index values of 0.385 and 1.90 respectively. Jaccards coefficient based dendrogram grouped all genotypes into three groups and separated genotypes based on their oil and fibre contents. STRUCTURE analysis showed two genetic stocks for all the analyzed genotypes and recorded higher admixture in indigenous germplasm. Overall, the results showed that the characterized genotypes were highly diverse genetically and can be used in future breeding and improvement programmes in this crop. Specifically, genotypes such as KL-257, KL-236, Surbhi, Bahgsu and Himani can be used as diverse parents in breeding programmes for generating improved lines in context to oil content.


Crop improvement Genetic diversity Inter-simple sequence repeat (ISSR) Flax Random amplified polymorphic DNA (RAPD) 



We gratefully acknowledge Indian Council of Agricultural Rsearch (ICAR) for providing financial support under All India Coordinated Research Project (AICRP) on linseed to conduct this research work.

Authors contribution

SP conceived the study, AP performed experiments, VS guided the experimental work analyzed the data and wrote the manuscript. All authors have approved the final version of manuscript.

Compliance with ethical standards

Conflict of interest

Authors declare no conflict of interest.

Supplementary material

13237_2017_206_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 13 kb)


  1. 1.
    Abou-El-Nasr THS, Mahfouze HA. Genetic variability of golden flax (Linum usitatissimum L.) using RAPD markers. World Appl Sci J. 2013;26:851–6.Google Scholar
  2. 2.
    Adugna W, Labuschagne MT, Viljoen CD. The use of morphological and AFLP markers in diversity analysis of linseed. Biodivers Conserv. 2006;15:3193–205.CrossRefGoogle Scholar
  3. 3.
    Bjelková M, Nôžková J, Fatrcová-Šramková K, Tejklová E. Comparison of linseed (Linum usitatissimum L.) genotypes with respect to the content of polyunasturated fatty acids. Chem Pap. 2012;66:972–6.CrossRefGoogle Scholar
  4. 4.
    Braulio J, Cerda S, Butler IM, Munoz G, Rupayan A, Cloutier S. SSR-based population structure, molecular diversity and linkage disequilibrium analysis of a collection of flax (Linum usitatissimum L.) varying for mucilage seed-coat content. Mol Breed. 2012;30:875–88.CrossRefGoogle Scholar
  5. 5.
    Bunney S. The illustrated encyclopedia of herbs (their medicinal and culinary uses). London: Chancellor Press; 1992. p. 182.Google Scholar
  6. 6.
    Chandrawati Maurya R, Singh PK, Ranade SA, Yadav HK. Diversity analysis in Indian genotypes of linseed (Linum usitatissimum L.) using AFLP markers. Gene. 2014;549:171–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Dikshit N, Sivaraj N. Analysis of agro-morphological diversity and oil content in Indian linseed germplasm. Grasas Aceites. 2015;66(1):e060.CrossRefGoogle Scholar
  8. 8.
    Doyle JJ, Doyle JE. Isolation of plant DNA from fresh tissue. Focus. 1990;12:13–5.Google Scholar
  9. 9.
    Earl DA, VonHoldt BM. STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4:359.CrossRefGoogle Scholar
  10. 10.
    El-Beltagi HS, Salama ZA, El-Hariri DM. Evaluation of fatty acids profile and the content of some secondary metabolites in seeds of different flax cultivars (Linum usitatissimum L.). Gen Appl Plant Physiol. 2007;33:187–202.Google Scholar
  11. 11.
    Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20.CrossRefPubMedGoogle Scholar
  12. 12.
    Everaert I, Riek JD, Loose MD, Waes JV, Bockstaele EV. Most similar variety grouping for distinctness evaluation of flax and linseed (Linum usitatissimum L.) varieties by means of AFLP and morphological data. Plant Var Seeds. 2001;14:69–87.Google Scholar
  13. 13.
    Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes. 2007;7:574–8.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Fu Y, Rowland GG, Duguid SD, Richards KW. RAPD analysis of 54 North American flax cultivars. Crop Sci. 2003;43:1510–5.CrossRefGoogle Scholar
  15. 15.
    Hosseinian FS, Rowland GG, Bhirud PR, Dyck JH, Tyler RT. Chemical composition and physicochemical and hydrogenation characteristics of high- palmitic acid solin (low-linolenic acid flaxseed) Oil. J Am Oil Chem Soc. 2004;81:185–8.CrossRefGoogle Scholar
  16. 16.
    Jhala AJ, Hall LM. Flax (Linum usitatissimum L.): current uses and future applications. Aust J Basic Appl Sci. 2010;4:4304–12.Google Scholar
  17. 17.
    Kanwar RR, Saxena R, Ruth Elizabeth ER. Variability, heritability and genetic advance for yield and some yield related traits in linseed (Linum usitatissimum L.). Agric Sci Dig. 2014;34:154–6.CrossRefGoogle Scholar
  18. 18.
    Kiran K, Sood VK, Bhateria S. Detection of genetic components of variation for yield fibre and quality traits in flax (Linum usitatissimum L.). J Agric Sci. 2012;4(10):224–31.Google Scholar
  19. 19.
    Nykter M, Kymäläinen HR, Gates F, Sjöberg AM. Quality characteristics of edible linseed oil. Agric food Sci. 2006;15:402–13.CrossRefGoogle Scholar
  20. 20.
    Perrier X, Jacquemoud-Collet JP. DARwin software. 2006-
  21. 21.
    Prevost A, Wilkinson MJ. A new system of comparing PCR primers applied to ISSR fingerprinting of potato cultivars. Theor Appl Genet. 1999;98:107–12.CrossRefGoogle Scholar
  22. 22.
    Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155:945–59.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Rahimi MM, Nourmohamadi G, Ayneband A, Afshar E, Mafpourian G. Study on effects of planting date and nitrogen levels on yield, yield components and fatty acids of linseed (Linum ussitatisimum L.). World Appl Sci J. 2011;12:59–67.Google Scholar
  24. 24.
    Rajwade AV, Arora RS, Kadoo NY, Harsulkar AM, Ghorpade PB, Gupta VS. Relatedness of Indian flax genotypes (Linum usitatissimum L.): an inter-simple sequence repeat (ISSR) primer assay. Mol Biotechnol. 2010;45:161–70.CrossRefPubMedGoogle Scholar
  25. 25.
    Roldan-Ruiz I, Dendauw J, Bockstaele V, Depicker A, Loose M. AFLP markers reveal high polymorphic rates in ryegrasses (Lolium spp.). Mol Breed. 2000;6:125–34.CrossRefGoogle Scholar
  26. 26.
    Schmidt TJ, Klaes M, Sendker J. Lignans in seeds of Linum species. Phytochemistry. 2012;82:89–99.CrossRefPubMedGoogle Scholar
  27. 27.
    Sharma V, Sharma TR, Rana JC, Chahota RK. Analysis of genetic diversity and population structure in horsegram (Macrotyloma uniflorum) using RAPD and ISSR markers. Agric Res. 2015;4(3):221–30.CrossRefGoogle Scholar
  28. 28.
    Smýkal P, Bačová-Kerteszová N, Kalendar R, Corander J, Schulman AH, Pavelek M. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers. Theor Appl Genet. 2011;122:1385–97.CrossRefPubMedGoogle Scholar
  29. 29.
    Soto-Cerda BJ, Saavedra, HU, Navarro CN, Ortega PM. Characterization of novel genic SSR markers in Linum usitatissimum (L.) and their transferability across eleven Linum species. 2011. doi: 10.2225/vol14-issue2-fulltext-6.
  30. 30.
    Uysal H, Fu YB, Kurt O, Peterson GW, Diederichsen A, Kusters P. Genetic diversity of cultivated flax (Linum usitatissimum L.) and its wild progenitor pale flax (Linum bienne Mill.) as revealed by ISSR markers. Genet Resour Crop Evol. 2010;57:1109–19.CrossRefGoogle Scholar
  31. 31.
    Westcott NA, Muir AD. Flax seed lignan in disease prevention and health promotion. Phytochem Rev. 2003;2:401–17.CrossRefGoogle Scholar
  32. 32.
    Wiesnerova D, Wiesner I. ISSR-based clustering of cultivated flax germplasm is statistically correlated to thousand seed mass. Mol Biotechnol. 2004;26:207–14.CrossRefPubMedGoogle Scholar
  33. 33.
    Williams JG, Kubelik AR, Livak KJ, Rafaski JA, Tingey SV. DNA polymorphism amplified by arbitrary primers are useful as genetic marker. Nucl Acids Res. 1990;18:6531–5.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Yadava DK, Vasudev S, Singh N, Mohapatra T, Prabhu KV, Gupta SK. Breeding major oil crops: present status and future research needs. Technol Innovations Major World Oil Crops Breed. 2102. doi: 10.1007/978-1-4614-0356-2.
  35. 35.
    Zuk M, Richter D, Matuła J, Szopa J. Linseed, the multipurpose plant. Ind Crop Prod. 2015;75:165–77.CrossRefGoogle Scholar

Copyright information

© Archana Sharma Foundation of Calcutta 2017

Authors and Affiliations

  1. 1.Department of Crop ImprovementCSK HP Agricultural UniversityPalampurIndia
  2. 2.Department of BotanyPunjabi University PatialaPatialaIndia

Personalised recommendations