Synthesis, Polymerization Kinetics and Thermal Properties of Benzoxazine Resin Containing ortho-Maleimide Functionality

Abstract

A benzoxazine monomer with ortho-maleimide functionality has been synthesized using ortho-maleimide functional phenol, aniline and paraformaldehyde as starting materials. The chemical structure of this benzoxazine monomer is verified by 1H and 13C nuclear magnetic resonance (NMR) and Fourier transform infrared (FT-IR) spectroscopies, elemental analysis as well as high-resolution mass spectrometry. The polymerization behavior of benzoxazine has been studied by differential scanning calorimetry (DSC) and in situ FT-IR. Besides, the kinetic parameters have been calculated by non-isothermal DSC with different heating rates. The apparent activation energy value of the ortho-maleimide functional benzoxazine is calculated to be 72.43 kJ/mol based on the Starink method. In addition, our predicted thermograms based on the developed model fit well with the curves obtained from experimental DSC results. Moreover, DSC and thermogravimetric analyses (TGA) are used to determine the thermal properties of the cross-linked thermoset. The resulting polybenzoxazine derived from ortho-maleimide functional shows excellent thermal stability (Tg of 247 °C; Td5 of 333 °C), evidencing its great potential application in high-performance fields.

This is a preview of subscription content, access via your institution.

References

  1. (1)

    A. Ramgobin, G. Fontaine, and S. Bourbigot, Polym. Rev., 59, 55 (2019).

    CAS  Article  Google Scholar 

  2. (2)

    R. J. Iredale, C. Ward, and I. Hamerton, Prog., Polym. Sci., 69, 1 (2017).

    CAS  Article  Google Scholar 

  3. (3)

    T. Otsu, A. Matsumoto, T. Kubota, and S. Mori, Polym. Bull., 23, 43 (1990).

    CAS  Article  Google Scholar 

  4. (4)

    C. P. R. Nair and T. Francis, J. Appl. Polym. Sci., 74, 3365 (1999).

    CAS  Article  Google Scholar 

  5. (5)

    S. Thamizharasi and B. S. R. Reddy, J. Appl. Polym. Sci., 80, 1870 (2001).

    CAS  Article  Google Scholar 

  6. (6)

    X. Wang, D. Y. Chen, W. H. Ma, X. J. Yang, and L. D. Lu, J. Appl. Polym. Sci., 71, 665 (1999).

    CAS  Article  Google Scholar 

  7. (7)

    B. A. Rozenberg, E. A. Dzhavadyan, R. Morgan, and E. Shin, Polym. Adv. Technol., 13, 837 (2002).

    CAS  Article  Google Scholar 

  8. (8)

    Y. Liu, L. Cao, J. Luo, Y. Peng, Q. Ji, J. Dai, J. Zhu, and X. Liu, ACS Sustain. Chem. Eng., 7, 2763 (2019).

    CAS  Article  Google Scholar 

  9. (9)

    N. N. Ghosh, B. Kiskan, and Y. Yagci, Prog, Polym. Sci., 32, 1344 (2007).

    CAS  Article  Google Scholar 

  10. (10)

    H. Ishida and T. Agag Handbook of Benzoxazine Resins, Elsevier, 2011.

  11. (11)

    H. Y. Wang, P. Zhao, H. Ling, Q. C. Ran, and Y. Gu, J. Appl. Polym. Sci., 127, 2169 (2013).

    CAS  Article  Google Scholar 

  12. (12)

    K. Zhang, Z. K. Shang, C. J. Evans, L. Han, H. Ishida, and S. F. Yang, Macromolecules, 51, 7574 (2018).

    CAS  Article  Google Scholar 

  13. (13)

    C. H. Chen, C. H. Lin, J. M. Hon, M. W. Wang, and T. Y. Juang, Polymer, 154, 35 (2018).

    CAS  Article  Google Scholar 

  14. (14)

    K. Sethuraman and M. Alagar, RSC Adv., 5, 9607 (2015).

    CAS  Article  Google Scholar 

  15. (15)

    K. C. Chen, H. T. Li, S. C. Huang, W. B. Chen, K. W. Sun, and F. C. Chang, Polym. Int., 60, 1089 (2011).

    CAS  Article  Google Scholar 

  16. (16)

    W. C. Chen and S. W. Kuo, Macromolecules, 51, 9602 (2018).

    CAS  Article  Google Scholar 

  17. (17)

    K. Zhang, L. Han, P. Froimowicz, and H. Ishida, Macromolecules, 50, 6552 (2017).

    CAS  Article  Google Scholar 

  18. (18)

    J. Wu, Y. Xi, G. T. Mccandless, Y. Xie, R. Menon, Y. Patel, R. Menon, Y. Patel, D. J. Yang, S. T. Iacono, and B. M. Novak, Macromolecules, 48, 6087 (2015).

    CAS  Article  Google Scholar 

  19. (19)

    K. Zhang, X. Yu, and S. W. Kuo, Polym. Chem., 10, 2387 (2019).

    CAS  Article  Google Scholar 

  20. (20)

    C. J. Higginson, K. G. Malollari, Y. Xu, A. V. Kelleghan, N. G. Ricapito, and P. Messersmith, Angew. Chem. Int. Ed., 58, 12271 (2019).

    CAS  Article  Google Scholar 

  21. (21)

    M. Monisha, N. Amarnath, S. Mukherjee, and B. Lochab, Macromol. Chem. Phys., 220, 1800470 (2019).

    Article  CAS  Google Scholar 

  22. (22)

    T. Chaisuwan and H. Ishida, J. Appl. Polym. Sci., 101, 548 (2006).

    CAS  Article  Google Scholar 

  23. (23)

    H. Ishida and S. Ohba, Polymer, 46, 5588 (2005).

    CAS  Article  Google Scholar 

  24. (24)

    Y. Liu, J. Yu, and C. Chou, J. Polym. Sci. Pol. Chem., 42, 5954 (2004).

    CAS  Article  Google Scholar 

  25. (25)

    L. Jin, T. Agag, and H. Ishida, Eur. Polym. J., 46, 354 (2010).

    CAS  Article  Google Scholar 

  26. (26)

    K. Zhang, Y. Q. Liu, and H. Ishida, Macromolecules, 52, 7386 (2019).

    CAS  Article  Google Scholar 

  27. (27)

    K. S. S. Kumar, C. P. R. Nair, R. Sadhana, and K. N. Ninan, Eur. Polym. J., 43, 5084 (2007).

    CAS  Article  Google Scholar 

  28. (28)

    K. Zhang and H. Ishida, Polymer, 66, 240 (2015).

    CAS  Article  Google Scholar 

  29. (29)

    M. K. Ghosh, and K. L. Mittal, Polyimides: Fundamentals and Applications, New York: Marcel Dekker, New York, 1996.

    Google Scholar 

  30. (30)

    X. Q. Liu, M. Jikei, and M. Kakimoto, Macromolecules, 34, 3146 (2001).

    CAS  Article  Google Scholar 

  31. (31)

    T. J. Dingemans, E. Mendes, J. J. Hinkley, E. S. Weiser, and T. L. StClair, Macromolecules, 41, 2474 (2008).

    CAS  Article  Google Scholar 

  32. (32)

    J. Reams and D. J. Boyles, Appl. Polym. Sci., 121, 756 (2011).

    CAS  Article  Google Scholar 

  33. (33)

    C. Yang, Q. Wang, H. L. Xie, G. Q. Zhong, and H. L. Zhang, Liq. Cryst., 37, 1339 (2010).

    CAS  Article  Google Scholar 

  34. (34)

    K. Zhang, Y. Q. Liu, C. J. Evans, and S. F. Yang, Macromol. Rapid. Commun., 41, 1900625 (2020).

    CAS  Article  Google Scholar 

  35. (35)

    H. Friedman, J. Polym. Sci. Part A: Polym. Chem., 1, 57 (1967).

    CAS  Google Scholar 

  36. (36)

    H. E. Kissinger, Anal. Chem., 29, 1702 (1957).

    CAS  Article  Google Scholar 

  37. (37)

    T. Ozawa, J. Therm. Anal. Calorim., 2, 301 (1970).

    CAS  Article  Google Scholar 

  38. (38)

    S. Vyazovkin, A. K. Burnham, J. M. Criado, L. A. Pérez-Maqueda, C. Popescu, and N. Sbirrazzuoli, Thermochim. Acta, 520, 1 (2011).

    CAS  Article  Google Scholar 

  39. (39)

    K. Zhang, X. Y. Yu, Y. T. Wang, and Y. Q. Liu, ACS Appl. Polym. Mater., 1, 2713 (2019).

    CAS  Article  Google Scholar 

  40. (40)

    K. Zhang, Y. Q. Liu, M. C. Han, and P. Froimowicz, Green. Chem., 22, 1209 (2020).

    CAS  Article  Google Scholar 

  41. (41)

    T. Agag and T. Takeichi, Macromolecules, 36, 6010 (2003).

    CAS  Article  Google Scholar 

  42. (42)

    L. Han, D. Iguchi, P. Gil, T. R. Heyl, V. M. Sedwick, C. R. Arza, S. Ohashi, D. J. Lacks, and H. Ishida, J. Phys. Chem. A., 121, 6269 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. (43)

    X. Y. Yu, Z. K. Shang, and K. Zhang, Thermochim. Acta, 675, 29 (2019).

    CAS  Article  Google Scholar 

  44. (44)

    H. Ishida and P. Froimowicz, Advanced and Emerging Polybenzoxazine Science and Technology, Elsevier, 2017.

  45. (45)

    L. Han, M. L. Salum, K. Zhang, P. Froimowicz, and H. Ishida, J. Polym. Sci. Part A: Polym. Chem., 55, 3434 (2017).

    CAS  Article  Google Scholar 

  46. (46)

    M. Xu, Y. Luo, Y. Lei, and X. Liu, Polym. Test., 55, 38 (2016).

    CAS  Article  Google Scholar 

  47. (47)

    C. Jubsilp, S. Damrongsakkul, T. Takeichi, and S. Rimdusit, Thermochim. Acta, 447, 131 (2006).

    CAS  Article  Google Scholar 

  48. (48)

    Z. Lei and H. Xiao, Polymer, 51, 3814 (2010).

    Article  CAS  Google Scholar 

  49. (49)

    H. L. Friedman, J. Polym. Sci. Part C: Polym. Symp., 6, 183 (1964).

    Article  Google Scholar 

  50. (50)

    C. Jubsilp, K. Punson, T. Takeichi, and S. Rimdusit, Polym. Degrad. Stab., 95, 918 (2010).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

The authors are indebted to the financial supports of the Natural Science Foundation of China (52073125 and 51603093).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kan Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hao, B., Liu, Y., Yu, X. et al. Synthesis, Polymerization Kinetics and Thermal Properties of Benzoxazine Resin Containing ortho-Maleimide Functionality. Macromol. Res. 29, 24–32 (2021). https://doi.org/10.1007/s13233-021-9006-7

Download citation

Keywords

  • benzoxazine
  • maleimide
  • polymerization kinetics
  • thermal properties