Shear-Enhanced Stretchable Polymer Semiconducting Blends for Polymer-based Field-Effect Transistors


Solution-sheared field-effect transistors based on the blend of the high-mobility donor-acceptor conjugated copolymer poly(diketopyrrolo[3,4-c]pyrrole-co-thieno[3,2-b]thiophene) (PDBT-co-TT) and the elastic polymer poly(styrene-butadiene-styrene) (SBS) are demonstrated for stretchable electronics. In this study, PDBT-co-TT serves as a charge transport layer, and the insulating polymer SBS with double bonds is used for improving elasticity. Through combination with solution shearing, the phase separation and charge transport properties of the PDBT-co-TT/SBS blends can be manipulated. Compared with the spin-coated PDBT-co-TT/SBS blends showing lower charge mobilities (~10−3 cm2 V−1 s−1), the solution-sheared polymer-blend films with the PDBT-co-TT content of 20% maintain high mobility (>0.1 cm2 V−1 s−1). The films with 60% PDBT-co-TT can even achieve mobility as high as 2 cm2 V−1 s−1, which is higher than the pristine conjugated polymer. Furthermore, as the SBS content increases, the dichroic ratios of the solution-sheared blends increase, indicating improved alignment of the conjugated polymer chains. The PDBT-co-TT/SBS blends exhibit great stretchability and high charge mobilities even under 100% strain due to their mesh-like morphology. Moreover, solution shearing not only improves polymer alignment but also controls surface morphology to enhance stretchability. This work reveals the importance of solution shearing in high-mobility stretchable polymer semiconductor blends.

This is a preview of subscription content, log in to check access.


  1. (1)

    Y. Li, P. Sonar, L. Murphy, and W. Hong, Energy Environ. Sci., 6, 1684 (2013).

    CAS  Article  Google Scholar 

  2. (2)

    Z. Yi, S. Wang, and Y. Liu, Adv. Mater., 27, 3589 (2015).

    CAS  Article  Google Scholar 

  3. (3)

    T. Lei, Y. Cao, Y. Fan, C.-J. Liu, S.-C. Yuan, and J. Pei, J. Am. Chem. Soc., 133, 6099 (2011).

    CAS  Article  Google Scholar 

  4. (4)

    J. Mei, D.H. Kim, A.L. Ayzner, M.F. Toney, and Z. Bao, J. Am. Chem. Soc., 133, 20130 (2011).

    CAS  Article  Google Scholar 

  5. (5)

    J. Lee, A. R. Han, J. Kim, Y. Kim, J. H. Oh, and C. Yang, J. Am. Chem. Soc., 134, 20713 (2012).

    CAS  Article  Google Scholar 

  6. (6)

    I. Kang, H.-J. Yun, D. S. Chung, S.-K. Kwon, and Y.-H. Kim, J. Am. Chem. Soc., 135, 14896 (2013).

    CAS  Article  Google Scholar 

  7. (7)

    J. Li, Y. Zhao, H. S. Tan, Y. Guo, C.-A. Di, G. Yu, Y. Liu, M. Lin, S. H. Lim, Y. Zhou, H. Su, and B. S. Ong, Sci. Rep., 2, 754 (2012).

    Article  Google Scholar 

  8. (8)

    J.-F. Chang, B. Sun, D. W. Breiby, M. M. Nielsen, T. I. Sölling, M. Giles, I. McCulloch, and H. Sirringhaus, Chem. Mater., 16, 4772 (2004).

    CAS  Article  Google Scholar 

  9. (9)

    G. Giri, E. Verploegen, S. C. B. Mannsfeld, S. Atahan-Evrenk, D. H. Kim, S. Y. Lee, H. A. Becerril, A. Aspuru-Guzik, M. F. Toney, and Z. Bao, Nature, 480, 504 (2011).

    CAS  Article  Google Scholar 

  10. (10)

    Y. Diao, B. C. K. Tee, G. Giri, J. Xu, D. H. Kim, H. A. Becerril, R. M. Stoltenberg, T. H. Lee, G. Xue, S. C. B. Mannsfeld, and Z. Bao, Nat. Mater., 12, 665 (2013).

    CAS  Article  Google Scholar 

  11. (11)

    W.-Y. Lee, J. H. Oh, S.-L. Suraru, W.-C. Chen, F. Würthner, and Z. Bao, Adv. Funct. Mater., 21, 4173 (2011).

    CAS  Article  Google Scholar 

  12. (12)

    W.-Y. Lee, G. Giri, Y. Diao, C. J. Tassone, J. R. Matthews, M. L. Sorensen, S. C. B. Mannsfeld, W.-C. Chen, H. H. Fong, J. B.-H. Tok, M. F. Toney, M. He, and Z. Bao, Adv. Funct. Mater., 24, 3524 (2014).

    CAS  Article  Google Scholar 

  13. (13)

    D. Khim, H. Han, K.-J. Baeg, J. Kim, S.-W. Kwak, D.-Y. Kim, and Y.-Y. Noh, Adv. Mater., 25, 4302 (2013).

    CAS  Article  Google Scholar 

  14. (14)

    H. N. Tsao, D. Cho, J. W. Andreasen, A. Rouhanipour, D. W. Breiby, W. Pisula, and K. Müllen, Adv. Mater., 21, 209 (2009).

    CAS  Article  Google Scholar 

  15. (15)

    H. Sirringhaus, T. Kawase, R.H. Friend, T. Shimoda, M. Inbasekaran, W. Wu, and E. P. Woo, Science, 290, 2123 (2000).

    CAS  Article  Google Scholar 

  16. (16)

    J. H. Oh, W.-Y. Lee, T. Noe, W.-C. Chen, M. Könemann, and Z. Bao, J. Am. Chem. Soc., 133, 4204 (2011).

    CAS  Article  Google Scholar 

  17. (17)

    D.-Y. Guo, Y.-B. Tsai, T.-F. Yu, and W.-Y. Lee, J. Mater. Chem. C, 6, 12006 (2018).

    CAS  Article  Google Scholar 

  18. (18)

    E. Mohammadi, C. Zhao, Y. Meng, G. Qu, F. Zhang, X. Zhao, J. Mei, J.-M. Zuo, D. Shukla, and Y. Diao, Nat. Commun., 8, 16070 (2017).

    CAS  Article  Google Scholar 

  19. (19)

    H.-C. Wu, S. J. Benight, A. Chortos, W.-Y. Lee, J. Mei, J. W. F. To, C. Lu, M. He, J. B. H. Tok, W.-C. Chen, and Z. Bao, Chem. Mater., 26, 4544 (2014).

    CAS  Article  Google Scholar 

  20. (20)

    J. Y. Oh, S. Rondeau-Gagné, Y.-C. Chiu, A. Chortos, F. Lissel, G.-J. N. Wang, B. C. Schroeder, T. Kurosawa, J. Lopez, T. Katsumata, J. Xu, C. Zhu, X. Gu, W.-G. Bae, Y. Kim, L. Jin, J. W. Chung, J. B. H. Tok, and Z. Bao, Nature, 539, 411 (2016).

    CAS  Article  Google Scholar 

  21. (21)

    C. Lu, W.-Y. Lee, C.-C. Shih, M.-Y. Wen, and W.-C. Chen, ACS Appl. Mater. Interfaces, 9, 25522 (2017).

    CAS  Article  Google Scholar 

  22. (22)

    Y. Lee, J. Y. Oh, W. Xu, O. Kim, T. R. Kim, J. Kang, Y. Kim, D. Son, J. B.-H. Tok, M. J. Park, Z. Bao, and T.-W. Lee, Sci. Adv., 4, eaat7387 (2018).

    CAS  Article  Google Scholar 

  23. (23)

    J. Xu, H.-C. Wu, C. Zhu, A. Ehrlich, L. Shaw, M. Nikolka, S. Wang, F. Molina-Lopez, X. Gu, S. Luo, D. Zhou, Y.-H. Kim, G.-J. N. Wang, K. Gu, V. R. Feig, S. Chen, Y. Kim, T. Katsumata, Y.-Q. Zheng, H. Yan, J. W. Chung, J. Lopez, B. Murmann, and Z. Bao, Nat. Mater., 18, 594 (2019).

    CAS  Article  Google Scholar 

  24. (24)

    M. Y. Lee, S. Dharmapurikar, S. J. Lee, Y. Cho, C. Yang, and J. H. Oh, Chem. Mater., 32, 1914 (2020).

    CAS  Article  Google Scholar 

  25. (25)

    M. Shin, J. Y. Oh, K.-E. Byun, Y.-J. Lee, B. Kim, H.-K. Baik, J.-J. Park, and U. Jeong, Adv. Mater., 27, 1255 (2015).

    CAS  Article  Google Scholar 

  26. (26)

    L. Qiu, W. H. Lee, X. Wang, J. S. Kim, J. A. Lim, D. Kwak, S. Lee, and K. Cho, Adv. Mater., 21, 1349 (2009).

    CAS  Article  Google Scholar 

  27. (27)

    S. Wang, J. Xu, W. Wang, G.-J. N. Wang, R. Rastak, F. Molina-Lopez, J. W. Chung, S. Niu, V. R. Feig, J. Lopez, T. Lei, S.-K. Kwon, Y. Kim, A. M. Foudeh, A. Ehrlich, A. Gasperini, Y. Yun, B. Murmann, J. B. H. Tok, and Z. Bao, Nature, 555, 83 (2018).

    CAS  Article  Google Scholar 

  28. (28)

    J. Xu, S. Wang, G.-J. N. Wang, C. Zhu, S. Luo, L. Jin, X. Gu, S. Chen, V. R. Feig, J. W. F. To, S. Rondeau-Gagné, J. Park, B. C. Schroeder, C. Lu, J. Y. Oh, Y. Wang, Y.-H. Kim, H. Yan, R. Sinclair, D. Zhou, G. Xue, B. Murmann, C. Linder, W. Cai, J. B.-H. Tok, J. W. Chung, and Z. Bao, Science, 355, 59 (2017).

    CAS  Article  Google Scholar 

  29. (29)

    Y. Ito, A. A. Virkar, S. Mannsfeld, J. H. Oh, M. Toney, J. Locklin, and Z. Bao, J. Am. Chem. Soc., 131, 9396 (2009).

    CAS  Article  Google Scholar 

  30. (30)

    A. Virkar, S. Mannsfeld, J. H. Oh, M. F. Toney, Y. H. Tan, G.-Y. Liu, J. C. Scott, R. Miller, and Z. Bao, Adv. Funct. Mater., 19, 1962 (2009).

    CAS  Article  Google Scholar 

  31. (31)

    H.-W. Lin, W.-Y. Lee, and W.-C. Chen, J. Mater. Chem., 22, 2120 (2012).

    CAS  Article  Google Scholar 

  32. (32)

    Y. Diao, Y. Zhou, T. Kurosawa, L. Shaw, C. Wang, S. Park, Y. Guo, J. A. Reinspach, K. Gu, X. Gu, B. C. K. Tee, C. Pang, H. Yan, D. Zhao, M. F. Toney, S. C. B. Mannsfeld, and Z. Bao, Nat. Commun., 6, 7955 (2015).

    CAS  Article  Google Scholar 

  33. (33)

    J.-C. Lin, W.-Y. Lee, H.-C. Wu, C.-C. Chou, Y.-C. Chiu, Y.-S. Sun, and W.-C. Chen, J. Mater. Chem., 22, 14682 (2012).

    CAS  Article  Google Scholar 

  34. (34)

    B. O’Connor, R. J. Kline, B. R. Conrad, L. J. Richter, D. Gundlach, M. F. Toney, and D. M. DeLongchamp, Adv. Funct. Mater., 21, 3697 (2011).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Wen-Ya Lee.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: W.-Y. L. received funding support from the Ministry of Science and Technology of the Republic of China (Grant No.104-2218-E-027-007-MY3 and 107-2221-E-027-026-MY2). W.-Y. L. also thanks the support of X-ray scattering equipment support from National Synchrotron Radiation Research Center on beamline 13A in Hsinchu and Time-of-Flight Secondary Ion Mass Spectrometer from Instrumentation Center at National Tsing Hua University. This manuscript was edited by Wallace Academic Editing.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yan, Q., Shia, Y., Guo, D. et al. Shear-Enhanced Stretchable Polymer Semiconducting Blends for Polymer-based Field-Effect Transistors. Macromol. Res. 28, 660–669 (2020).

Download citation


  • solution shearing
  • donor-acceptor copolymer
  • stretchable field-effect transistors
  • polymer blends