Flexible Organic Electrolyte-Gated Transistors Based on Thin Polymer Blend Films of Crystalline C8-BTBT and Amorphous PTAA

Abstract

Thin films of polymer blends consisting of a crystalline small-molecular semiconductor, 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT), and an amorphous polymer semiconductor, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine] (PTAA), are studied and applied to organic electrolyte-gated transistors (OEGTs). The compositions can be easily controlled by adjusting the mixing ratios of the solutions in chloroform. In the thin-film state, PTAA acts as a structural matrix and a charge-transport bridge for C8-BTBT grains. The C8-BTBT:PTAA blends have a compositional effect on the thin-film properties and performance of OEGTs. As a result, the C8-BTBT:PTAA blend films with weight ratios of 8:2 exhibit a hole mobility twice that of pristine C8-BTBT films. Moreover, OEGTs based on the C8-BTBT:PTAA blend exhibit better charge-transport properties on flexible plastic substrates under bending conditions, compared to flat devices.

This is a preview of subscription content, log in to check access.

References

  1. (1)

    L.-H. Chou, Y. Na, C.-H. Park, M. S. Park, I. Osaka, F. S. Kim, and C.-L. Liu, Polymer, 191, 122208 (2020).

    CAS  Article  Google Scholar 

  2. (2)

    J. Smith, R. Hamilton, I. McCulloch, N. Stingelin-Stutzmann, M. Heeney, D. D. C. Bradley, and T. D. Anthopoulos, J. Mater. Chem., 20, 2562 (2010).

    CAS  Article  Google Scholar 

  3. (3)

    K. Myny, Nat. Electron., 1, 30 (2018).

    CAS  Article  Google Scholar 

  4. (4)

    M. Ashizawa, Y. Zheng, H. Tran, and Z. Bao, Prog. Polym. Sci., 100, 101181 (2020).

    CAS  Article  Google Scholar 

  5. (5)

    O. Larsson, E. Said, M. Berggren, and X. Crispin, Adv. Funct. Mater., 19, 3334 (2009).

    CAS  Article  Google Scholar 

  6. (6)

    S. Ono, K. Miwa, S. Seki, and J. Takeya, Appl. Phys. Lett., 94, 063301 (2009).

    Article  Google Scholar 

  7. (7)

    J. H. Cho, J. Lee, Y. He, B. Kim, T. P. Lodge, and C. D. Frisbie, Adv. Mater., 20, 686 (2008).

    CAS  Article  Google Scholar 

  8. (8)

    K. H. Lee, M. S. Kang, S. Zhang, Y. Gu, T. P. Lodge, and C. D. Frisbie, Adv. Mater., 24, 4457 (2012).

    CAS  Article  Google Scholar 

  9. (9)

    H. J. Kim, H. M. Yang, J. Koo, M. S. Kang, K. Hong, and K. H. Lee, ACS Appl. Mater. Interfaces, 9, 42978 (2017).

    CAS  Article  Google Scholar 

  10. (10)

    A. Giovannitti, D.-T. Sbircea, S. Inal, C. B. Nielsen, E. Bandiello, D. A. Hanifi, M. Sessolo, G. G. Malliaras, I. McCulloch, and J. Rivnay, Proc. Natl. Acad. Sci., 113, 12017 (2016).

    CAS  Article  Google Scholar 

  11. (11)

    H. You, D. Kim, H.-H. Cho, C. Lee, S. Chong, N. Y. Ahn, M. Seo, J. Kim, F. S. Kim, and B. J. Kim, Adv. Funct. Mater., 28, 1803613 (2018).

    Article  Google Scholar 

  12. (12)

    H. Opoku, C. Bathula, M. D. Mamo, N. K. Shrestha, T. Lee, and Y.-Y. Noh, Macromol. Res., 27, 90 (2019).

    CAS  Article  Google Scholar 

  13. (13)

    E. Lee, W. Shin, O. Bae, F. S. Kim, and Y.-J. Hwang, Polymer, 184, 121856 (2019).

    CAS  Article  Google Scholar 

  14. (14)

    L. Q. Flagg, C. G. Bischak, J. W. Onorato, R. B. Rashid, C. K. Luscombe, and D. S. Ginger, J. Am. Chem. Soc., 141, 4345 (2019).

    CAS  Article  Google Scholar 

  15. (15)

    A. A. Meresa and F. S. Kim, Polymers, 12, 128 (2020).

    CAS  Article  Google Scholar 

  16. (16)

    J. Huang, M. Pei, H. S. Kim, H. Yang, and D.-H. Hwang, Macromol. Res., 27, 227 (2019).

    CAS  Article  Google Scholar 

  17. (17)

    Y. Na and F. S. Kim, Chem. Mater., 31, 4759 (2019).

    CAS  Article  Google Scholar 

  18. (18)

    T. Izawa, E. Miyazaki, and K. Takimiya, Adv. Mater., 20, 3388 (2008).

    CAS  Article  Google Scholar 

  19. (19)

    H. Ebata, T. Izawa, E. Miyazaki, K. Takimiya, M. Ikeda, H. Kuwabara, and T. Yui, J. Am. Chem. Soc., 129, 15732 (2007).

    CAS  Article  Google Scholar 

  20. (20)

    A. Y. Amin, A. Khassanov, K. Reuter, T. Meyer-Friedrichsen, and M. Halik, J. Am. Chem. Soc., 134, 16548 (2012).

    CAS  Article  Google Scholar 

  21. (21)

    G. Schweicher, V. Lemaur, C. Niebel, C. Ruzie, Y. Diao, O. Goto, W. Y. Lee, Y. Kim, J. B. Arlin, J. Karpinska, A. R. Kennedy, S. R. Parkin, Y. Olivier, S. C. Mannsfeld, J. Cornil, Y. H. Geerts, and Z. Bao, Adv. Mater., 27, 3066 (2015).

    CAS  Article  Google Scholar 

  22. (22)

    M. Di Lauro, M. Berto, M. Giordani, S. Benaglia, G. Schweicher, D. Vuillaume, C. A. Bortolotti, Y. H. Geerts, and F. Biscarini, Adv. Electron. Mater., 3, 1700159 (2017).

    Article  Google Scholar 

  23. (23)

    C. Liu, T. Minari, X. Lu, A. Kumatani, K. Takimiya, and K. Tsukagoshi, Adv. Mater., 23, 523 (2011).

    CAS  Article  Google Scholar 

  24. (24)

    A. Perez-Rodriguez, I. Temino, C. Ocal, M. Mas-Torrent, and E. Barrena, ACS Appl. Mater. Interfaces, 10, 7296 (2018).

    CAS  Article  Google Scholar 

  25. (25)

    J. Huang, J. Du, Z. Cevher, Y. Ren, X. Wu, and Y. Chu, Adv. Funct. Mater., 27, 1604163 (2017).

    Article  Google Scholar 

  26. (26)

    T. Shen, H. Zhou, J. Xin, Q. Fan, Z. Yang, J. Wang, T. Mei, X. Wang, N. Wang, and J. Li, Appl. Surface Sci., 498, 143822 (2019).

    CAS  Article  Google Scholar 

  27. (27)

    K. Zhao, O. Wodo, D. Ren, H. U. Khan, M. R. Niazi, H. Hu, M. Abdelsamie, R. Li, E. Q. Li, and L. Yu, Adv. Funct. Mater., 26, 1737 (2016).

    CAS  Article  Google Scholar 

  28. (28)

    J. Smith, M. Heeney, I. McCulloch, J. N. Malik, N. Stingelin, D. D. Bradley, and T. D. Anthopoulos, Org. Electron., 12, 143 (2011).

    CAS  Article  Google Scholar 

  29. (29)

    R. Janneck, F. Vercesi, P. Heremans, J. Genoe, and C. Rolin, Adv. Mater., 28, 8007 (2016).

    CAS  Article  Google Scholar 

  30. (30)

    R. Janneck, T. S. Nowack, F. De Roose, H. Ali, W. Dehaene, P. Heremans, J. Genoe, and C. Rolin, Org. Electron., 67, 64 (2019).

    CAS  Article  Google Scholar 

  31. (31)

    W. Wei, C. Yang, J. Mai, Y. Gong, L. Yan, K. Zhao, H. Ning, S. Wu, J. Gao, and X. Gao, J. Mater. Chem. C, 5, 10652 (2017).

    CAS  Article  Google Scholar 

  32. (32)

    S. Dai, Y. Chu, D. Liu, F. Cao, X. Wu, J. Zhou, B. Zhou, Y. Chen, and J. Huang, Nat. Commun., 9, 2737 (2018).

    Article  Google Scholar 

  33. (33)

    A. Intaniwet, J. L. Keddie, M. Shkunov, and P. J. Sellin, Org. Electron., 12, 1903 (2011).

    CAS  Article  Google Scholar 

  34. (34)

    J. Veres, S. Ogier, G. Lloyd, and D. De Leeuw, Chem. Mater., 16, 4543 (2004).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Felix Sunjoo Kim.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgments: This research was supported by the “Cooperative Research Program for Agriculture Science and Technology Development (Project No. PJ01281001)” of the Rural Development Administration of Korea. This work was also supported by the Chung-Ang University Graduate Research Scholarship in 2019.

The image from this article is used as the cover image of the Volume 28, Issue 7.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bae, O., Kim, F.S. Flexible Organic Electrolyte-Gated Transistors Based on Thin Polymer Blend Films of Crystalline C8-BTBT and Amorphous PTAA. Macromol. Res. 28, 677–682 (2020). https://doi.org/10.1007/s13233-020-8118-9

Download citation

Keywords

  • small-molecular semiconductor
  • polymer blend
  • organic electrolyte-gated transistor
  • flexible electronic device
  • bending test