Interfacial Configurations of Lens-Shaped Particles

Abstract

We study the configuration behaviors of non-spherical lens-shaped particles at a fluid-fluid interface. The attachment energies of truncated spheres and biconvex particles are calculated numerically to determine the thermodynamically stable configuration of the particles at the interface. When the particle is rotated 180° perpendicular to the interface, two energy minima are observed in the attachment energy profile. One corresponds to equilibrium and the other to a metastable orientation. The high energy barrier between the two energy minima indicates that the particle with the metastable condition is not spontaneously converted to the equilibrium state, such that the interface adsorption and orientation behaviors of the particles are irreversible and are determined stochastically. A further comprehensive investigation of the interfacial pinning phenomena of the truncated or biconvex boundary and free-rotation of the particles is also performed for different wettability and geometric factors. This study offers simple design rules for the synthesis of anisotropic particles used as a solid surfactant.

This is a preview of subscription content, log in to check access.

References

  1. (1)

    B. P. Binks, Curr. Opin. Colloid Interface Sci., 7, 21 (2002).

    CAS  Article  Google Scholar 

  2. (2)

    B. J. Park and D. Lee, MRS Bulletin, 39, 1089 (2014).

    CAS  Article  Google Scholar 

  3. (3)

    S. U. Pickering, J. Chem. Soc. Trans., 91, 2001 (1907).

    Article  Google Scholar 

  4. (4)

    W. Ramsden, Proc. R. Soc. London, 72, 156 (1903).

    CAS  Google Scholar 

  5. (5)

    J. Yang, C. Kwak, J. Kim, H. Park, S. Lim, and J. Lee, Macromol. Res., 28, 282 (2019).

    Article  CAS  Google Scholar 

  6. (6)

    T. H. Min and H. J. Choi, Macromol. Res., 25, 565 (2017).

    CAS  Article  Google Scholar 

  7. (7)

    C. L. Harman, M. A. Patel, S. Guldin, and G.-L. Davies, Curr. Opin. Colloid Interface Sci., 39, 173 (2019).

    CAS  Article  Google Scholar 

  8. (8)

    H. Yi, Y. Yang, X. Gu, J. Huang, and C. Wang, J. Mater. Chem. A, 3, 13749 (2015).

    CAS  Article  Google Scholar 

  9. (9)

    N. Kumar, T. Gaur, and A. Mandal, J. Ind. Eng. Chem., 54, 304 (2017).

    CAS  Article  Google Scholar 

  10. (10)

    H. Yan, X. Chen, H. Song, J. Li, Y. Feng, Z. Shi, X. Wang, and Q. Lin, Food Hydrocoll., 72, 127 (2017).

    CAS  Article  Google Scholar 

  11. (11)

    L. Qi, Z. Luo, and X. Lu, Green Chem., 20, 1538 (2018).

    CAS  Article  Google Scholar 

  12. (12)

    Y. W. Kim, D. Lim, H. Han, S. Lee, K. H. Choi, and B. J. Park, J. Ind. Eng. Chem., 82, 190 (2020).

    CAS  Article  Google Scholar 

  13. (13)

    S. Daradmare, K. H. Choi, J. Kim, and B. J. Park, J. Ind. Eng. Chem., 84, 96 (2020).

    CAS  Article  Google Scholar 

  14. (14)

    P. J. Yunker, T. Still, M. A. Lohr, and A. Yodh, Nature, 476, 308 (2011).

    CAS  PubMed  Article  Google Scholar 

  15. (15)

    J. Vermant, Nature, 476, 286 (2011).

    CAS  PubMed  Article  Google Scholar 

  16. (16)

    S. Barman and G. F. Christopher, J. Rheol., 60, 35 (2016).

    CAS  Article  Google Scholar 

  17. (17)

    M. Cavallaro, L. Botto, E. P. Lewandowski, M. Wang, and K. J. Stebe, Proc. Natl. Acad. Sci. U.S.A., 108, 20923 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  18. (18)

    A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch, and D. A. Weitz, Science, 298, 1006 (2002).

    CAS  PubMed  Article  Google Scholar 

  19. (19)

    M. F. Haase, K. J. Stebe, and D. Lee, Adv. Mater., 27, 7065 (2015).

    CAS  PubMed  Article  Google Scholar 

  20. (20)

    E. Herzig, K. White, A. Schofield, W. Poon, and P. Clegg, Nat. Mater., 6, 966 (2007).

    CAS  PubMed  Article  Google Scholar 

  21. (21)

    A. Stocco, B. Chollet, X. L. Wang, C. Blanc, and M. Nobili, J Colloid Interface Sci., 542, 363 (2019).

    CAS  PubMed  Article  Google Scholar 

  22. (22)

    D. Dendukuri and P. S. Doyle, Adv. Mater., 21, 4071 (2009).

    CAS  Article  Google Scholar 

  23. (23)

    C. H. Choi, J. Lee, K. Yoon, A. Tripathi, H. A. Stone, D. A. Weitz, and C. S. Lee, Angew. Chem. Int. Ed., 49, 7748 (2010).

    CAS  Article  Google Scholar 

  24. (24)

    M. Xia, K. H. Kim, J. Lee, E. M. Go, B. Park, T. Yu, S. K. Kwak, H. B. Na, and B. J. Park, Chem. Eng. J., 339, 125 (2018).

    CAS  Article  Google Scholar 

  25. (25)

    S. J. Ahn, K. H. Ahn, and S. J. Lee, Colloid Polym. Sci., 294, 859 (2016).

    CAS  Article  Google Scholar 

  26. (26)

    M. Xia, K. H. Kim, B. Park, T. Yu, and B. J. Park, Part. Part. Syst. Char., 35, 1700486 (2018).

    Article  CAS  Google Scholar 

  27. (27)

    B. J. Park and E. M. Furst, Langmuir, 26, 10406 (2010).

    CAS  PubMed  Article  Google Scholar 

  28. (28)

    J. W. Kim, J. Cho, J. Cho, B. J. Park, Y.-J. Kim, K.-H. Choi, and J. W. Kim, Angew. Chem. Int. Ed., 55, 4509 (2016).

    CAS  Article  Google Scholar 

  29. (29)

    W.-H. Chen, F. Tu, L. C. Bradley, and D. Lee, Chem. Mater., 29, 2685 (2017).

    CAS  Article  Google Scholar 

  30. (30)

    M. Oettel and S. Dietrich, Langmuir, 24, 1425 (2008).

    CAS  PubMed  Article  Google Scholar 

  31. (31)

    R. Aveyard, J. H. Clint, D. Nees, and V. N. Paunov, Langmuir, 16, 1969 (2000).

    CAS  Article  Google Scholar 

  32. (32)

    A. J. Hurd, J. Phys. A: Math. Gen., 45, L1055 (1985).

    Article  Google Scholar 

  33. (33)

    B. J. Park and D. Lee, Small, 11, 4560 (2015).

    CAS  PubMed  Article  Google Scholar 

  34. (34)

    K. H. Choi, D. W. Kang, S. Yoo, S. Lee, and B. J. Park, ACS Appl. Polym. Mater., 2, 1304 (2020).

    CAS  Article  Google Scholar 

  35. (35)

    P. A. Kralchevsky and K. Nagayama, Langmuir, 10, 23 (1994).

    CAS  Article  Google Scholar 

  36. (36)

    J. H. Lim, J. Y. Kim, D. W. Kang, K. H. Choi, S. J. Lee, S. H. Im, and B. J. Park, Langmuir, 34, 384 (2018).

    CAS  PubMed  Article  Google Scholar 

  37. (37)

    D. W. Kang, K. H. Choi, S. J. Lee, and B. J. Park, J. Phys. Chem. Lett., 10, 1691 (2019).

    CAS  PubMed  Article  Google Scholar 

  38. (38)

    T. Yao, N. G. Chisholm, E. B. Steager, and K. J. Stebe, Appl. Phys. Lett., 116, 043702 (2020).

    Article  CAS  Google Scholar 

  39. (39)

    B. J. Park, C.-H. Choi, S.-M. Kang, K. E. Tettey, C.-S. Lee, and D. Lee, Soft Matter, 9, 3383 (2013).

    CAS  Article  Google Scholar 

  40. (40)

    B. J. Park, C.-H. Choi, S.-M. Kang, K. E. Tettey, C.-S. Lee, and D. Lee, Langmuir, 29, 1841 (2013).

    CAS  PubMed  Article  Google Scholar 

  41. (41)

    V. R. Dugyala, S. V. Daware, and M. G. Basavaraj, Soft Matter, 9, 6711 (2013).

    CAS  Article  Google Scholar 

  42. (42)

    B. J. Park, D. Lee, and E. M. Furst, in Particle-Stabilized Emulsions and Colloids: Formation and Applications, The Royal Society of Chemistry, 2015, pp 8–44.

  43. (43)

    B. J. Park and D. Lee, ACS Nano, 6, 782 (2012).

    CAS  PubMed  Article  Google Scholar 

  44. (44)

    B. J. Park and D. Lee, Soft Matter, 8, 7690 (2012).

    CAS  Article  Google Scholar 

  45. (45)

    H. E. Lee, K. H. Choi, M. Xia, D. W. Kang, and B. J. Park, J. Colloid Interface Sci., 560, 838 (2020).

    Article  CAS  Google Scholar 

  46. (46)

    B. Madivala, J. Fransaer, and J. Vermant, Langmuir, 25, 2718 (2009).

    CAS  PubMed  Article  Google Scholar 

  47. (47)

    K. Masschaele, J. Fransaer, and J. Vermant, J. Rheol., 53, 1437 (2009).

    CAS  Article  Google Scholar 

  48. (48)

    E. J. Stancik, M. J. O. Widenbrant, A. T. Laschitsch, J. Vermant, and G. G. Fuller, Langmuir, 18, 4372 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Research Foundation (NRF) of Korea, NRF-2014R1A5A1009799.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bum Jun Park.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supporting Information

Information is available regarding the additional geometry for the attachment energy calculation. The material is available via the Internet at http://www.springer.com/13233.

Supporting Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, K.H., Seo, T.S. & Park, B.J. Interfacial Configurations of Lens-Shaped Particles. Macromol. Res. (2020). https://doi.org/10.1007/s13233-020-8114-0

Download citation

Keywords

  • lens-shaped particle
  • attachment energy
  • fluid-fluid interface
  • equilibrium orientation
  • metastable orientation