Mixed Matrix PVA-GO-TiO2 Membranes for the Dehydration of Isopropyl Alcohol by Pervaporation

Abstract

In the current work, mixed matrix membranes of polyvinyl alcohol (PVA)-graphene oxide (GO)-titanium dioxide (TiO2) were prepared using a solvent evaporation technique for the separation of isopropyl alcohol from its azeotropic mixture with water by pervaporation. In this work, the effects of the feed water concentration in the range of 10%–40% and the feed temperature of 50–80 °C have been investigated. The characterization of membranes was done by X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and the contact angle measurements. The Arrhenius activation energy for permeation was determined to be in the range of 8–12.8 kJ/mol. The results of the diffusion coefficient values and the Arrhenius activation energy parameters showed that the water-selectivity was improved at higher concentrations of GO-TiO2.

This is a preview of subscription content, log in to check access.

References

  1. (1)

    P. S. Rachipudi, A. A. Kittur, A. M. Sajjan, and M. Y. Kariduraganavar, J. Membr. Sci., 441, 83 (2013).

    CAS  Google Scholar 

  2. (2)

    C. Xu, A. Cui, Y. Xu, and X. Fu, Carbon, 62, 465 (2013).

    CAS  Google Scholar 

  3. (3)

    A. Anis, A. Banthia, and S. Bandyopadhyay, J. Mater. Eng. Perform., 17, 772 (2008).

    CAS  Google Scholar 

  4. (4)

    S. Yu, Z. Chen, Q. Cheng, Z. Lu, M. Liu, and C. Gao, Sep. Purif Technol., 88, 121 (2012).

    CAS  Google Scholar 

  5. (5)

    J. A. Franco, S. E. Kentish, J. M. Perera, and G. W. Stevens, Ind. Eng. Chem. Res., 50, 4011 (2011).

    CAS  Google Scholar 

  6. (6)

    P. Bernardo, E. Drioli, and G. Golemme, Ind. Eng. Chem. Res., 48, 4638 (2009).

    CAS  Google Scholar 

  7. (7)

    M. Noack, P. Kolsch, R. Schafer, P. Toussaint, and J. Caro, Chem. Eng. Technol., 25, 221 (2002).

    CAS  Google Scholar 

  8. (8)

    Z. L. Xiu and A. P. Zeng, Appl. Microbiol. Biotechnol., 78, 917 (2008).

    CAS  PubMed  Google Scholar 

  9. (9)

    V. Van Hoof, L. Van den Abeele, A. Buekenhoudt, C. Dotremont, and R. Leysen, Sep. Purif Technol., 37, 33 (2004).

    Google Scholar 

  10. (10)

    X. Feng and R. Y. Huang, Ind. Eng. Chem. Res., 36, 1048 (1997).

    CAS  Google Scholar 

  11. (11)

    M. Chen, X. Wu, F. Soyekwo, Q. Zhang, R. Lv, A. Zhu, and Q. Liu, Sep. Purif Technol, 174, 166 (2017).

    CAS  Google Scholar 

  12. (12)

    P. Das and S. K. Ray, J. Taiwan Inst. Chem. Eng., 64, 89 (2016).

    CAS  Google Scholar 

  13. (13)

    K. Y. Jee, N. Kim, and Y. T. Lee, J. Ind. Eng. Chem., 44, 155 (2016).

    CAS  Google Scholar 

  14. (14)

    N. Jullok, R. Van Hooghten, P. Luis, A. Volodin, C. Van Haesendonck, J. Vermant, and B. Van der Bruggen, J. Clean. Prod., 112, 4879 (2016).

    CAS  Google Scholar 

  15. (15)

    H. R. Mehta and Z. V. P. Murthy, J. Polym. Mater., 33, 319 (2016).

    CAS  Google Scholar 

  16. (16)

    Y. T. Ong and S. H. Tan, Chem. Eng. Res. Des., 109, 116 (2016).

    CAS  Google Scholar 

  17. (17)

    H. S. Samanta and S. K. Ray, Sep. Purif Technol., 146, 176 (2015).

    CAS  Google Scholar 

  18. (18)

    H. Sardarabadi, S. M. Mousavi, and E. Saljoughi, Appl. Surf. Sci., 368, 277 (2016).

    CAS  Google Scholar 

  19. (19)

    K. Setnickova, R. Petrychkovych, J. Reznickova, and P. Uchytil, J. Taiwan Inst. Chem. Eng., 58, 49 (2016).

    CAS  Google Scholar 

  20. (20)

    T. Uragami, T. Saito, and T. Miyata, Carbohydr. Polym., 120, 1 (2015).

    CAS  PubMed  Google Scholar 

  21. (21)

    H. Wu, T. Zhou, X. Li, C. Zhao, and Z. Jiang, Chin. J. Chem. Eng., 23, 372 (2015).

    CAS  Google Scholar 

  22. (22)

    W. Zhang, Y. Ying, J. Ma, X. Guo, H. Huang, D. Liu, and C. Zhong, J. Membr. Sci., 527, 8 (2017).

    CAS  Google Scholar 

  23. (23)

    W. S. Hummers Jr. and R. E. Offeman, J. Am. Chem. Soc., 80, 1339 (1958).

    CAS  Google Scholar 

  24. (24)

    Y. Si and E. T. Samulski, Nano Lett, 8, 1679 (2008).

    CAS  PubMed  Google Scholar 

  25. (25)

    X. Chen, G. Liu, H. Zhang, and Y. Fan, Chin. J. Chem. Eng., 23, 1102 (2015).

    CAS  Google Scholar 

  26. (26)

    J. H. Jhaveri and Z. V. P. Murthy, Desalin. Water Treat., 55, 26803 (2016).

    Google Scholar 

  27. (27)

    J. H. Jhaveri and Z. V. P. Murthy, Desalination, 379, 137 (2016).

    CAS  Google Scholar 

  28. (28)

    S. Khilari, S. Pandit, M. M. Ghangrekar, D. Pradhan, and D. Das, Ind. Eng. Chem. Res., 52, 11597 (2013).

    CAS  Google Scholar 

  29. (29)

    J. H. Kang, T. Kim, J. Choi, J. Park, Y. S. Kim, M. S. Chang, H. Jung, K. T. Park, S. J. Yang, and C. R. Park, Chem. Mater., 28, 756 (2016).

    CAS  Google Scholar 

  30. (30)

    J. Sun, N. Yang, Z. Sun, M. Zeng, L. Fu, C. Hu, and S. Hu, ACS Appl. Mater. Interf, 7, 21356 (2015).

    CAS  Google Scholar 

  31. (31)

    H. Beydaghi, M. Javanbakht, and E. Kowsari, Ind. Eng. Chem. Res., 53, 16621 (2014).

    CAS  Google Scholar 

  32. (32)

    M. Safarpour, A. Khataee, and V. Vatanpour, Ind. Eng. Chem. Res., 53, 13370 (2014).

    CAS  Google Scholar 

  33. (33)

    D. Chen, X. Wang, T. Liu, X. Wang, and J. Li, ACS Appl. Mater. Interf., 2, 2005 (2010).

    CAS  Google Scholar 

  34. (34)

    J. S. Park, S. M. Cho, W. J. Kim, J. Park, and P. J. Yoo, ACS Appl. Mater. Interf., 3, 360 (2011).

    CAS  Google Scholar 

  35. (35)

    X. Qian, N. Li, Q. Wang, and S. Ji, Desalination, 438, 83 (2018).

    CAS  Google Scholar 

  36. (36)

    P. Rdzanek, S. Heitmann, A. Gorak, and W. Kaminski, Sep. Purif. Technol., 155, 83 (2015).

    CAS  Google Scholar 

  37. (37)

    G. B. Thorat, S. Gupta, and Z. V. P. Murthy, Chin. J. Chem. Eng., 25, 1402 (2017).

    CAS  Google Scholar 

  38. (38)

    T. Uragami, Y. Matsuoka, and T. Miyata, J. Membr. Sci., 506, 109 (2016).

    CAS  Google Scholar 

  39. (39)

    W. Tang, H. Lou, Y. Li, X. Kong, Y. Wu, and X. Gu, J. Membr. Sci., 581, 93 (2019).

    CAS  Google Scholar 

  40. (40)

    M. B. M. Y. Ang, M. R. Gallardo, G. V. C. Dizon, M. R. De Guzman, L. L. Tayo, S. H. Huang, C. L. Lai, H. A. Tsai, W. S. Hung, C. C. Hu, Y. Chang, and K. R. Lee J. Membr. Sci, 587, 117188 (2019).

    CAS  Google Scholar 

  41. (41)

    H. Wang, L. Wang, C. Qu, Y. Su, S. Yu, W. Zheng, and Y. Liu, J. Solid State Chem., 184, 881 (2011).

    CAS  Google Scholar 

  42. (42)

    Y. Wang, L. Jiang, T. Matsuura, T. S. Chung, and S. H. Goh, J. Membr. Sci., 318, 217 (2008).

    CAS  Google Scholar 

  43. (43)

    B. Rajaeian, A. Heitz, M. O. Tade, and S. Liu, J. Membr. Sci., 485, 48 (2015).

    CAS  Google Scholar 

  44. (44)

    Y. Devrim, S. Erkan, N. Bac, and I. Eroglu, Int. J. Hydrogen Energy, 34, 3467 (2009).

    CAS  Google Scholar 

  45. (45)

    I. Eroglu, Y. Devrim, S. Erkan, and N. Bac, Preparation and Characterization of Nafion/Titanium Dioxide Nanocomposite Membranes for Proton Exchange Membrane Fuel Cells, 18th World Hydrogen Energy Conference 2010 - WHEC 2010, Proceedings of the WHEC, D. Stolten and T. Grube, Eds., May 16–21, 2010, pp 141–146.

  46. (46)

    L. Garcia-Cruz, C. Casado-Coterillo, A. Irabien, V. Montiel, and J. Iniesta, J. Carbon Res., 2, 10 (2016).

    Google Scholar 

  47. (47)

    S. Nam, K. H. Lee, Y. Kang, S. M. Park, and J. W. Lee, Sep. Sci. Technol., 13, 2927 (2007).

    Google Scholar 

  48. (48)

    S. Xiao, R. Y. Huang, and X. Feng, J. Membr. Sci., 286, 245 (2006).

    CAS  Google Scholar 

  49. (49)

    C. L. Bao, Y. Q. Guo, L. Song, and Y. Hu, J. Mater. Chem., 21, 13942 (2011).

    CAS  Google Scholar 

  50. (50)

    P. S. Rachipudi, M. Y. Kariduraganavar, A. A. Kittur, and A. M. Sajjan, J. Membr. Sci., 383, 224 (2011).

    CAS  Google Scholar 

  51. (51)

    N. Wang S. Ji, G. Zhang, J. Li, and L. Wang, Chem. Eng. J., 213, 318 (2012).

    CAS  Google Scholar 

  52. (52)

    S. P. Dharupaneedi, R. V. Anjanapura, J. M. Han, and T. M. Aminabhavi, Ind. Eng. Chem. Res., 53, 14474 (2014).

    CAS  Google Scholar 

  53. (53)

    X. Qiao, T. S. Chung, and K. Pramoda, J. Membr. Sci., 264, 176 (2005).

    CAS  Google Scholar 

  54. (54)

    S. Razavi, A. Sabetghadam, and T. Mohammadi, Chem. Eng. Res. Des., 89, 148 (2011).

    CAS  Google Scholar 

  55. (55)

    M. Sairam, M. B. Patil, R. S. Veerapur, S. A. Patil, and T. M. Aminabhavi, J. Membr. Sci., 281, 95 (2006).

    CAS  Google Scholar 

  56. (56)

    J. G. Varghese, A. A. Kittur, P. S. Rachipudi, and M. Y. Kariduraganavar, J. Membr. Sci., 364, 111 (2010).

    CAS  Google Scholar 

  57. (57)

    Z. V. P. Murthy and M. K. Shah, Arab. J. Chem., 10, S56 (2017).

    Google Scholar 

  58. (58)

    R. Y. M. Huang, R. Pal, and G. Moon, J. Membr Sci, 167, 275 (2000).

    CAS  Google Scholar 

  59. (59)

    R. W. Baker, Membrane Technology and Applications, 2nd ed., John Wiley & Sons, Chichester, 2004.

    Google Scholar 

  60. (60)

    P. Izak, W. Ruth, Z. Fei, P. J. Dyson, and U. Kragl, Chem. Eng. J., 139, 318 (2008).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Z. V. P. Murthy.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgment: The authors acknowledge Sophisticated Analytical Instrument Facility (SAIF), IIT Bombay (India) for characterization analysis of the membranes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Thorat, G.B. & Murthy, Z.V.P. Mixed Matrix PVA-GO-TiO2 Membranes for the Dehydration of Isopropyl Alcohol by Pervaporation. Macromol. Res. 28, 587–595 (2020). https://doi.org/10.1007/s13233-020-8070-8

Download citation

Keywords

  • GO-TiO2 nanocomposite
  • pervaporation
  • dehydration
  • PVA