Skip to main content
Log in

Phosphate-Functionalized Stabilized F127 Nanoparticles: Introduction of Discrete Surface Charges and Electrophoretic Determination of Aggregation Number

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Pluronic F127 forms spherical micelle with a defined number of molecules aggregated in aqueous environments. Such self-assembled micelles dissociate into unimers below certain concentration and temperature. We stabilized the micelles by semi-interpenetrating network (sIPN) formation within the hydrophobic core in the presence of a fluorescent dye. Additionally, by varying the mixing ratio of negatively charged and pristine F127s we prepared thermally stable polymeric nanoparticles with discrete surface charges within nearly same sizes. Using the nanomaterials with prescribed number of charges, we demonstrate that the electrophoretic mobility of nanoparticles is solely depending on number of surface charges. Finally, the aggregation number (Nagg) of F127 was further determined by electrophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Y. Kozlov, N. S. Melik-Nubarov, E. V. Batrakova, and A. V. Kabanov, Macromolecules, 33, 3305 (2000).

    Article  CAS  Google Scholar 

  2. C. Kim, S. Kim, Y. Lim, and T. S. Lee, Macromol. Res., 25, 572 (2017).

    Article  CAS  Google Scholar 

  3. A. V. Kabanov, E. V. Batrakova, and V. Y. Alakhov, J. Control. Release, 82, 189 (2002).

    Article  CAS  PubMed  Google Scholar 

  4. A. Singh, W. Kim, Y. Kim, K. Jeong, C. S. Kang, Y. Kim, J. Koh, S. D. Mahajan, P. N. Prasad, and S. Kim, Adv. Funct. Mater., 26, 7057 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. C. Chaibundit, N. M. Ricardo, F. D. M. Costa, S. G. Yeates, and C. Booth, Langmuir, 23, 9229 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. K. Hong, Y. Jeon, and J. Kim, Macromol. Res., 17, 26 (2009).

    Article  CAS  Google Scholar 

  7. Y. I. Su, J. Wang, and H. Z. Liu, Macromolecules, 35, 6426 (2002).

    Article  CAS  Google Scholar 

  8. C. Yani, M. W. Bredenkamp, E. P. Jacobs, and P. Swart, Bioorg. Med. Chem. Lett., 13, 1381 (2003).

    Article  CAS  Google Scholar 

  9. P. Alexandridis, J. F. Holzwarth, and T. A. Hatton, Macromolecules, 27, 2414 (1994).

    Article  CAS  Google Scholar 

  10. A. V. Kabanov, I. R. Nazarova, I. V. Astafieva, E. V. Batrakova, V. Y. Alakhov, A. A. Yaroslavov, and V. A. Kabanov, Macromolecules, 28, 2303 (1995).

    Article  CAS  Google Scholar 

  11. P. J. Tummino and A. Gafni, Biophys. J., 64, 1580 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. P. K. Sharma and S. R. Bhatia, Int. J. Pharm., 278, 361 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. A. Higuchi, T. Yamamoto, K. Sugiyama, Hayashi, T. M. Tak, and T. Nakagawa, Biomacromolecules, 6, 691 (2005).

    Article  CAS  PubMed  Google Scholar 

  14. C. Wu, T. Liu, B. Chu, D. K. Schneider, and V. Graziano, Macromolecules, 30, 4574 (1997).

    Article  CAS  Google Scholar 

  15. D. Attwood, J. Collett, and C. Tait, Int. J. Pharm., 26, 25 (1985).

    Article  CAS  Google Scholar 

  16. A. Zaborin, J. R. Defazio, M. Kade, B. L. D. Kaiser, N. Belogortseva, D. G. Camp, R. D. Smith, J. N. Adkins, S. M. Kim, and A. Alverdy, Antimicrob. Agents Chemother., 58, 966 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. E. Lindahl, B. Hess, and D. Van Der Spoel, J. Mol. Model, 7, 306 (2001).

    Article  CAS  Google Scholar 

  18. D. Van Der Spoel, E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen, J. Comput. Chem., 26, 1701 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. B. Hess, C. Kutzner, D. Van Der Spoel, and E. Lindahl, J. Chem. Theory Comput., 4, 435 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. S. J. Marrink, A. H. De Vries, and A. E. Mark, J. Phys. Chem. B, 108, 750 (2004).

    Article  CAS  Google Scholar 

  21. S. J. Marrink, H. J. Risselada, S. Yefimov, D. P. Tieleman, and A. H. De Vries, J. Phys. Chem. B., 111, 7812 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. H. Lee, A. H. de Vries, S.-J. Marrink, and R. W. Pastor, J. Phys. Chem. B, 113, 13186 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. J. J. Uusitalo, H. I. Ingólfsson, P. Akhshi, D. P. Tieleman, and S. J. Marrink, J. Chem. Theory Comput., 11, 3932 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. S. Hezaveh, S. Samanta, A. De Nicola, G. Milano, and D. Roccatano, J. Phys. Chem. B, 16, 14333 (2012).

    Article  CAS  Google Scholar 

  25. G. Bussi, D. Donadio, and M. Parrinello, J. Chem. Phys., 126, 014101 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. H. J. Berendsen, J. v. Postma, W. F. van Gunsteren, A. Dinola, and J. Haak, J. Chem. Phys., 81, 3684 (1984).

    Article  CAS  Google Scholar 

  27. M. Parrinello and A. Rahman, J. Appl. Phys., 52, 7182 (1981).

    Article  CAS  Google Scholar 

  28. L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez, J. Comput. Chem., 30, 2157 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. P. Petrov, M. Bozukov, M. Burkhardt, S. Muthukrishnan, A. H. Müller, and C. B. Tsvetanov, J. Mater. Chem., 16, 2192 (2006).

    Article  CAS  Google Scholar 

  30. P. Petrov, M. Bozukov, and C. B. Tsvetanov, J. Mater. Chem., 15, 1481 (2005).

    Article  CAS  Google Scholar 

  31. H. Abdi, in Encyclopedia of Measurement and Statistics, Sage, Thousand Oaks, CA, 2007, p 508.

    Google Scholar 

  32. M. Kwak, A. J. Musser, J. Lee, and A. Herrmann, Chem. Commun., 46, 4935 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peter C. W. Lee or Minseok Kwak.

Additional information

Footnote: The image from this article is used as the cover image of the Volume 27, Issue 7

Acknowledgments: This work was supported by Marine Biotechnology Program funded by the Ministry of Oceans and Fisheries, Republic of Korea (20150220) and by the Korea Polar Research Institute (PAP 2018).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, J., Kang, M., Sari, M.I. et al. Phosphate-Functionalized Stabilized F127 Nanoparticles: Introduction of Discrete Surface Charges and Electrophoretic Determination of Aggregation Number. Macromol. Res. 27, 657–662 (2019). https://doi.org/10.1007/s13233-019-7100-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7100-x

Keywords

Navigation