Skip to main content
Log in

Enhanced Separation Performance of Stabilized Olefin Transport Membranes with High-Molecular-Weight Poly(ethylene oxide)

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

We found that membranes consisting of poly(ethylene oxide) (PEO), AgBF4, and Al(NO3)3 exhibit relatively high permeance, i.e., 20 gel permeation unit (GPU) with a mixed-gas selectivity of 10 for propylene/propane separation. To enhance separation, high-molecular-weight PEO was utilized as polymer matrix. As a result, when 9.0×105 g/mol PEO was utilized, the PEO/AgBF4/Al(NO3)3 electrolyte membranes showed permeance of 32 GPU with a selectivity of 11, as well as demonstrating long-term stability. It was found that longer polymer chains could enable extensive segmental motions that enhance olefin diffusion, thereby improving gas performance. Furthermore, the more viscous aqueous solution of high-molecular-weight PEO enabled the formation of a thinner layer, thus improving the mix-gas permeance of the membrane, using the same conditions as low-molecular-weight PEOs. The coordination interactions of metal ions and ether moieties in the same electrolyte membrane were investigated by FT-IR and X-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. T. Yang and E. S. Kikkinides, AIChE J., 41, 509 (1995).

    Article  CAS  Google Scholar 

  2. T. Ren, M. Patel, and K. Blok, Energy, 31, 425 (2006).

    Article  CAS  Google Scholar 

  3. D. M. Ruthve and S. C. Reyes, Micropor. Mesopor. Mat., 104, 59 (2007).

    Article  CAS  Google Scholar 

  4. P. Krokidas, M. Castier, and I. G. Economou, J. Phys. Chem. C, 121, 17999 (2017).

    Article  CAS  Google Scholar 

  5. R. J. Verploegh, S. Nair, and D. S. Sholl, J. Am. Chem. Soc., 137, 15760 (2015).

    Article  CAS  PubMed  Google Scholar 

  6. M. J. Lee, M. R. A. Hamid, J. Lee, J. S. Kim, Y. M. Lee, and H.-K. Jeong, J. Membrane Sci., 559, 28 (2018).

    Article  CAS  Google Scholar 

  7. Z. R. Herm, E. D. Bloch, and J. R. Long, Chem. Mater., 26, 323 (2014).

    Article  CAS  Google Scholar 

  8. J. Yu, C. Wang, L. Xiang, Y. Xu, and Y. Pan, Chem. Eng. Sci., 179, 1 (2018).

    Article  CAS  Google Scholar 

  9. C. Gucuyener, V. D. Bergh, J. Gasco, and F. Kapteijn, J. Am. Chem. Soc., 132, 17704 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. B. Li, H. Wang, and B. Chen, Chem. Asian J., 9, 1474 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. B. Li, H. M. Wen, W. Zhou, and B. Chen, J. Phys. Chem. Lett., 5, 3468 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. J. H. Lee, H. T. Kwon, S. Bae, J. Kim, and J. H. Kim, Sep. Purif. Technol., 207, 427 (2018).

    Article  CAS  Google Scholar 

  13. R. L. Grantom, and D. J. Royer, Ethylene, Ullmann’s Encyclopedia of Industrial Chemistry, VCH, New York, 5th ed., 1987.

    Google Scholar 

  14. K. Wang and E. I. Stiefel, Science, 291, 106 (2001).

    Article  CAS  PubMed  Google Scholar 

  15. K. A. Smith, J. H. Meldon, and C. K. Colton, AIChE J., 19, 102 (1973).

    Article  CAS  Google Scholar 

  16. W. S. Ho and D. C. Dalrymple, J. Membrane Sci., 91, 13 (1994).

    Article  CAS  Google Scholar 

  17. M. Azhin, T. Kaghazchi, and M. Rahmani, J. Ind. Eng. Chem., 14, 622 (2008).

    Article  CAS  Google Scholar 

  18. S. U. Hong, J. H. Jin, J. Won, and Y. S. Kang, Adv. Mater., 12, 968 (2000).

    Article  CAS  Google Scholar 

  19. C. Staudt-Bickel and W. J. Koros, J. Membrane Sci., 170, 205 (2000).

    Article  CAS  Google Scholar 

  20. I. G. Giannakopoulos and V. Nikolakis, Ind. Eng. Chem. Res., 44, 226 (2004).

    Article  CAS  Google Scholar 

  21. M. L. Chng, Y. Xiao, T.-S. Chung, M. Toriida, and S. Tamai, Carbon, 47, 1857 (2009).

    Article  CAS  Google Scholar 

  22. F. Y. Li, Y. Li, T. S. Chung, and S. Kawi, J. Membrane Sci., 356, 14 (2010).

    Article  CAS  Google Scholar 

  23. Z. Qiao, Z. Wang, C. Zhang, S. Yuan, Y. Zhu, J. Wang, and S. Wang, AIChE J., 59, 215 (2013).

    Article  CAS  Google Scholar 

  24. I. Pinnau and L. G. Toy, J. Membrane Sci., 184, 39 (2001).

    Article  CAS  Google Scholar 

  25. I. Pinnau, L. G. Toy, and C. Casillas, US Patent 5,670,051 (23 Sep. 1997).

  26. J. H. Ryu, H. Lee, Y. J Kim, Y. S. Kang, and H. S. Kim, Chem. Eur. J., 7, 1525 (2001).

    Article  CAS  PubMed  Google Scholar 

  27. S. W. Kang, J. H. Kim, J. Won, and Y. S. Kang, J. Membrane Sci., 445, 156 (2013).

    Article  CAS  Google Scholar 

  28. D. Song, Y. S. Kang, and S. W. Kang, J. Membrane Sci., 474, 273 (2015).

    Article  CAS  Google Scholar 

  29. Y. Li and Y. Hu, RSC Adv., 4, 51022 (2014).

    Article  CAS  Google Scholar 

  30. K. Nakajima, S. Nagaoka, and H. Kawakami, Polym. Adv. Technol., 14, 433 (2003).

    Article  CAS  Google Scholar 

  31. A. Halim, Q. Fu, Q. Yong, P. A. Gurr, S. E. Kentish, and G. G. Qiao, J. Mater. Chem. A, 2, 4999 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang Wook Kang.

Additional information

Acknowledgments: This work was supported by the Energy Efficiency & Resources of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant (20122010100040), funded by the Ministry of Trade, Industry, and Energy of the Korean government. This work was also supported by the Basic Science Research Program (2017R1D1A1B03032583) through the National Research Foundation of Korea (NRF), funded by the Ministry of Science, ICT, and Future Planning. The authors also appreciate Daeun Song’s technical support.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, I.S., Kang, S.W. Enhanced Separation Performance of Stabilized Olefin Transport Membranes with High-Molecular-Weight Poly(ethylene oxide). Macromol. Res. 27, 511–514 (2019). https://doi.org/10.1007/s13233-019-7066-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7066-8

Keywords

Navigation