Skip to main content
Log in

Bioreducible Polyspermine-Based Gene Carriers for Efficient siRNA Delivery: Effects of PEG Conjugation on Gene Silencing Efficiency

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

A polyspermine-derived bioreducible polymer was synthesized as efficient siRNA carriers. Spermine was polymerized using disulfide-bearing cross-linkers, resulting in poly(disulfide spermine) (PDS). PDS was also conjugated with poly(ethylene glycol) (PEG) to tailor siRNA condensation efficiency of the polymer. PEG-conjugated PDS (PEG-PDS) was able to condense siRNA into nano-sized polyplexes at high N/P ratios. siRNA condensation efficiency of PDS was reduced by PEGylation due to its weakened interaction with siRNA caused by its decreased cationic charge density. An ethidium bromide exclusion assay demonstrated that siRNA was more efficiently released from the less stable PEG-PDS polyplexes compared to stable PDS polyplexes. In addition, bioreducible siRNA/PEG-PDS polyplexes were efficiently disassembled in the reductive conditions, leading to facilitated siRNA release into the cytoplasm. The lowered siRNA condensation but efficient cytoplasmic release of siRNA by PEG-PDS induced higher gene silencing efficiency in comparison with PDS. Moreover, PEG-PDS exhibited lower cytotoxicity compared to PDS and non-biodegradable branched polyethylenimine. These results suggest that siRNA delivery efficiency of cationic gene carriers can be improved by tailoring their siRNA complexation through PEG conjugation. This study demonstrates that bioreducible PEG-PDS is a promising candidate for safe and efficient siRNA delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Elbashir, J. Harborth, W. Lendeckel, A. Yalcin, K. Weber, and T. Tuschl, Nature, 411, 494 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. D. H. Kim and J. J. Rossi, Nat. Rev. Genet., 8, 173 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. K. A. Whitehead, R. Langer, and D. G. Anderson, Nat. Rev. Drug Discov., 8, 129 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. S. Shim and Y. J. Kwon, FEBS J., 277, 4814 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. D. J. Gary, N. Puri, and Y. Y. Won, J. Control. Release, 121, 64 (2007).

    Article  CAS  PubMed  Google Scholar 

  6. D. Luo and W. M. Saltzman, Nat. Biotechnol., 18, 33 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. S. M. Sarett, C. E. Nelson, and C. L. Duvall, J. Control. Release, 218, 94 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Zhang, B. Zhao, H. Jiang, B. Wang, and B. Ma, J. Control. Release, 123, 1 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. K. A. Howard and J. Kjems, Expert Opin. Biol. Ther., 7, 1811 (2007).

    Article  CAS  PubMed  Google Scholar 

  10. C. Choi, J.-P. Nam, and J.-W. Nah, J. Ind. Eng. Chem., 33, 1 (2016).

    Article  CAS  Google Scholar 

  11. W. T. Godbey, K. K. Wu, and A. G. Mikos, J. Biomed. Mater. Res., 45, 268 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. D. Fischer, T. Bieber, Y. Li, H. Elsässer, and T. Kissel, Pharm. Res., 16, 1273 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. S. Alfei and S. Castellaro, Macromol. Res., 25, 1172 (2017).

    Article  CAS  Google Scholar 

  14. D. Jere, C.-X. Xu, R. Arote, C.-H. Yun, M.-H. Cho, and C.-S. Cho, Biomaterials, 29, 2535 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. M. S. Shim and Y. J. Kwon, Polym. Chem., 3, 2570 (2012).

    Article  CAS  Google Scholar 

  16. M. S. Shim, S.-S. Chang, and Y. J. Kwon, Biomater. Sci., 2, 35 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. M. Piest, C. Lin, M. A. Mateos-Timoneda, M. C. Lok, W. E. Hennink, J. Feijen, and J. F. J. Engbersen, J. Control. Release, 130, 38 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. K. Nam, J. W. Park, H. Bark, J. Han, J.-W. Nah, M.-K. Jang, and S. W. Kim, Macromol. Res., 22, 370 (2014).

    Article  CAS  Google Scholar 

  19. J. G. Hardy, M. A. Kostiainen, D. K. Smith, N. P. Gabrielson, and D. W. Pack, Bioconjug. Chem., 17, 172 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. J. Rejman, V. Oberle, I. S. Zuhorn, and D. Hoekstra, Biochem. J., 377, 159 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. S. Shim, X. Wang, R. Ragan, and Y. J. Kwon, Microsc. Res. Tech., 73, 845 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. C. Kim, Y. Lee, S. H. Lee, J. S. Kim, J. H. Jeong, and T. G. Park, Macromol. Res., 19, 166 (2011).

    Article  CAS  Google Scholar 

  23. M. Dominska and D. M. Dykxhoorn, J. Cell Sci., 123, 1183 (2010).

    Article  CAS  PubMed  Google Scholar 

  24. D. D. Dunlap, A. Maggi, M. R. Soria, and L. Monaco, Nucleic Acids Res., 25, 3095 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. A. Detzer, M. Overhoff, W. Wünsche, M. Rompf, J. J. Turner, G. D. Ivanova, M. J. Gait, and G. Sczakiel, RNA, 15, 627 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. N. A. Jones, I. R. C. Hill, S. Stolnik, S. F. Bignotti, S. S. Davis, and M. C. Garnett, Biochim. Biophys. Acta, 1517, 1 (2000).

    Article  CAS  PubMed  Google Scholar 

  27. D. J. Chen, B. S. Majors, A. Zelikin, and D. Putnam, J. Control. Release, 103, 273 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. M. Dearnley, N. P. Reynolds, P. Cass, X. Wei, S. Shi, A. A. Mohammed, T. Le, P. Gunatillake, M. L. Tizard, S. H. Thang, and T. M. Hinton, Biomacromolecules, 17, 3532 (2016).

    Article  CAS  PubMed  Google Scholar 

  29. Y. Sato, H. Hatakeyama, M. Hyodo, and H. Harashima, Mol. Ther., 24, 788 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. S. Mao, M. Neu, O. Germershaus, O. Merkel, J. Sitterberg, U. Bakowsky, and T. Kissel, Bioconjug. Chem., 17, 1209 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. E. Fröhlich, Int. J. Nanomedicine, 7, 5577 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Suk Shim.

Additional information

Acknowledgments: The authors acknowledge the financial support of Convergence Research Program (2014) through Incheon National University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhang, S.H., Kim, K., Rhee, W.J. et al. Bioreducible Polyspermine-Based Gene Carriers for Efficient siRNA Delivery: Effects of PEG Conjugation on Gene Silencing Efficiency. Macromol. Res. 26, 1135–1142 (2018). https://doi.org/10.1007/s13233-019-7027-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7027-2

Keywords

Navigation