Skip to main content
Log in

Interfacial Compression-Dependent Merging of Two Miscible Microdroplets in an Asymmetric Cross-Junction for In Situ Microgel Formation

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Controlling the merging of different microdroplets in a microfluidics system could generate a multitude of complex droplets because of their inherent surface tension, but poses a significant challenge because of their high surface tension. Here, a novel microfluidic merging technique is introduced using an asymmetric cross-junction geometry which increases the interfacial compression between two microdroplets. Microdroplets of two viscous polymer solutions, oxidized dextran (ODX) and N-carboxyethyl chitosan (N-CEC), which can undergo a crosslinking reaction via Schiff base formation, are allowed to merge at the asymmetric cross-junction without the assistance of additional merging schemes. The N-CEC and ODX microdroplets being formed at their orifices contact at a more favorable position to overcome their interfacial tension through this asymmetric geometry, until the interfacial layer breaks and pushes the former (with higher viscosity) into the latter. On the other hand, a typical symmetric cross-junction geometry cannot induce merging, because of insufficient interfacial compression generated by direct collision between two droplets. The merged N-CEC and ODX droplets soon become completely homogeneous via diffusion, ultimately leading to in situ microgel formation. Changing the concentration of ODX further controls the crosslinking density of the microgels. In addition, the viability of cells encapsulated within the microgels is well maintained, demonstrating the biocompatibility of the entire process. Taken together, the microfluidic merging technique introduced here could be broadly applicable for engineering cell-encapsulated microgels for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, Phys. Rev. Lett., 86, 4163 (2001).

    Article  CAS  PubMed  Google Scholar 

  2. C. Cramer, P. Fischer, and E. J. Windhab, Chem. Eng. Sci., 59, 3045 (2004).

    Article  CAS  Google Scholar 

  3. S. L. Anna, N. Bontoux, and H. A. Stone, Appl. Phys. Lett., 82, 364 (2003).

    Article  CAS  Google Scholar 

  4. S. A. Nabavi, G. T. Vladisavljevic, and V. Manovic, Chem. Eng. J., 322, 140 (2017).

    Article  CAS  Google Scholar 

  5. H. F. Chan, S. Ma, J. Tian, and K. W. Leong, Nanoscale, 9, 3485 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. A. T. Tyowua, S. G. Yiase, and B. P. Binks, J. Colloid Interface Sci., 488, 127 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Q. Zhang, S. Savagatrup, P. Kaplonek, P. H. Seeberger, and T. M. Swager, ACS Cent. Sci., 3, 309 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. Seiffert, M. B. Romanowsky, and D. A. Weitz, Langmuir, 26, 14842 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, Lab Chip, 8, 198 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. M. Sun, S. S. Bithi, and S. A. Vanapalli, Lab Chip, 11, 3949 (2011).

    Article  CAS  PubMed  Google Scholar 

  11. Y. C. Tan, Y. L. Ho, and A. P. Lee, Microfluid. Nanofluid., 3, 495 (2007).

    Article  Google Scholar 

  12. C. H. Yang, Y. S. Lin, K. S. Huang, Y. C. Huang, E. C. Wang, J. Y. Jhong, and C. Y. Kuo, Lab Chip, 9, 145 (2009).

    Article  CAS  PubMed  Google Scholar 

  13. K. Liu, H. J. Ding, Y. Chen, and X. Z. Zhao, Microfluid. Nanofluid., 3, 239 (2007).

    Article  CAS  Google Scholar 

  14. N. Bremond, A. R. Thiam, and J. Bibette, Phys. Rev. Lett., 100, 024501 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. B. C. Lin and Y. C. Su, J. Micromech. Microeng., 18, 115005 (2008).

    Article  Google Scholar 

  16. D. R. Link, S. L. Anna, D. A. Weitz, and H. A. Stone, Phys. Rev. Lett., 92, 054503 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Y. C. Tan, J. S. Fisher, A. I. Lee, V. Cristini, and A. P. Lee, Lab Chip, 4, 292 (2004).

    Article  CAS  PubMed  Google Scholar 

  18. H. Sato, H. Matsumura, S. Keino, and S. Shoji, J. Micromech. Microeng., 16, 2318 (2006).

    Article  Google Scholar 

  19. B. Ziaie, A. Baldi, M. Lei, Y. Gu, and R. A. Siegel, Adv. Drug Deliv. Rev., 56, 145 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. S. Kim, J. Oh, and C. Cha, Colloids Surf. B Biointerfaces, 147, 1 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. P. C. Gach, K. Iwai, P. W. Kim, N. J. Hillson, and A. K. Singh, Lab Chip, 17, 3388 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. E. Um and J. K. Park, Lab Chip, 9, 207 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. G. F. Christopher, J. Bergstein, N. B. End, M. Poon, C. Nguyen, and S. L. Anna, Lab Chip, 9, 1102 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Y. C. Tan, Y. L. Ho, and A. P. Lee, Microfluid. Nanofluid., 3, 495 (2007).

    Article  Google Scholar 

  25. S. Okushima, T. Nisisako, T. Torii, and T. Higuchi, Langmuir, 20, 9905 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. L. Y. Chu, A. S. Utada, R. K. Shah, J. W. Kim, and D. A. Weitz, Angew. Chem. Int. Ed., 46, 8970 (2007).

    Article  CAS  Google Scholar 

  27. V. Chokkalingam, B. Weidenhof, M. Krämer, S. Herminghaus, R. Seemann, and W. F. Maier, ChemPhysChem, 11, 2091 (2010).

    Article  CAS  PubMed  Google Scholar 

  28. V. Chokkalingam, B. Weidenhof, M. Krämer, W. F. Maier, S. Herminghaus, and R. Seemann, Lab Chip, 10, 1700 (2010).

    Article  CAS  PubMed  Google Scholar 

  29. B. J. Jin, Y. W. Kim, Y. Lee, and J. Y. Yoo, J. Micromech. Microeng., 20, 035003 (2010).

    Article  CAS  Google Scholar 

  30. L. M. Fidalgo, C. Abell, and W. T. Huck, Lab Chip, 7, 984 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. X. Niu, S. Gulati, J. B. Edel, and A. J. deMello, Lab Chip, 8, 1837 (2008).

    Article  CAS  PubMed  Google Scholar 

  32. J. Sivasamy, Y. C. Chim, T. N. Wong, N. T. Nguyen, and L. Yobas, Microfluid. Nanofluid., 8, 409 (2010).

    Article  CAS  Google Scholar 

  33. H. Gu, M. H. G. Duits, and F. Mugele, Int. J. Mol. Sci., 12, 2572 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. M. Lee, J. W. Collins, D. M. Aubrecht, R. A. Sperling, L. Solomon, J. W. Ha, G. R. Yi, D. A. Weitz, and V. N. Manoharan, Lab Chip, 14, 509 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. M. Zagnoni and J. M. Cooper, Lab Chip, 9, 2652 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. A. R. Guzman, H. S. Kim, P. de Figueiredo, and A. Han, Biomed. Microdevices, 17, 35 (2015).

    Article  CAS  PubMed  Google Scholar 

  37. V. B. Varma, A. Ray, Z. M. Wang, Z. P. Wang, and R. V. Ramanujan, Sci. Rep., 6, 37671 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. J. Jung, K. Kim, S. C. Choi, and J. Oh, Biotechnol. Lett., 36, 1549 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. L. Weng, A. Romanov, J. Rooney, and W. Chen, Biomaterials, 29, 3905 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J. Jung and J. Oh, Biomicrofluidics, 8, 036503 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. J. Oh, K. Kim, S. Choi, and J. Jung, Dig. J. Nanomater. Biostruct., 9, 739 (2014).

    Google Scholar 

  42. J. D. Tice, H. Song, A. D. Lyon, and R. F. Ismagilov, Langmuir, 19, 9127 (2003).

    Article  CAS  Google Scholar 

  43. J. D. Berry, M. J. Neeson, R. R. Dagastine, D. Y. C. Chan, and R. F. Tabor, J. Colloid Interface Sci., 454, 226 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. S. Fordham, Proc. Royal Soc. A, 194, 1 (1948).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinmu Jung or Jonghyun Oh.

Additional information

Acknowledgment: This work was supported by National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (2016R1C1B2014747, 2017R1A4A1015681, and 2017M3A9C6033875).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, Y., Cha, C., Jung, J. et al. Interfacial Compression-Dependent Merging of Two Miscible Microdroplets in an Asymmetric Cross-Junction for In Situ Microgel Formation. Macromol. Res. 26, 1143–1149 (2018). https://doi.org/10.1007/s13233-019-7013-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-019-7013-8

Keywords

Navigation