Skip to main content
Log in

Studies on the Change of Lithium Ion Battery Performance According to Length and Type of Surfactant on the Surface of Manganese Oxide Nanoparticles Prepared by Reverse Micelle Method

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In order to accurately analyze how the surfactant attached on the surface of the nanoparticles affects the catalytic activity, all other experimental conditions should be maintained except the surfactant. In this study, we control the hydrocarbon chain length of the alkylamine and carboxylic acid on the surface of manganese oxide (Mn3O4) nanoparticles while keeping their size and shape using a reverse micelle method. Despite the use of various lengths of surfactants, the size and shape of the synthesized nanoparticles remain virtually unchanged. After the mild heattreatment, they have different secondary particle morphologies even though the nano particles are preserved. Those prepared nanoparticles exhibit the characteristics voltage behavior under the galvanostatic charge and discharge. The obtained electrochemical performances are influenced by the surfactants. A coin cell having Mn3O4 nanoparticles coated by hexanoic acid and hexylamine shows the highest capacity than the other samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. H. Lee, S. Habas, S. Kweskin, D. Butcher, G. Somorjai, and P. Yang, Angew. Chem. Int. Ed., 45, 7864 (2006).

    Google Scholar 

  2. J. Park, J. Joo, S. Kwon, Y. Jang, and T. Hyeon, Angew. Chem. Int. Ed., 46, 4630 (2007).

    Article  CAS  Google Scholar 

  3. Y. Lee, J. Lee, C. J. Bae, J. G. Park, H. J. Noh, J. H. Park, and T. Hyeon, Adv. Funct. Mater., 15, 503 (2005).

    Article  CAS  Google Scholar 

  4. M. P. Pileni, Nat. Mater., 2, 145 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. J. Lin, Y. Lin, P. Liu, M. J. Meziani, L. F. Allard, and Y. J. Sun, J. Am. Chem. Soc., 124, 11514 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. P. Tartaj and C. Serna, J. Chem. Mater., 14, 4396 (2002).

    Article  CAS  Google Scholar 

  7. Z. Zhou, J. Wang, X. Liu, and H. Chan, J. Mater. Chem., 11, 1704 (2001).

    Article  CAS  Google Scholar 

  8. C. Liu, B. Zou, A. J. Rondinone, and Z. J. Zhang, J. Phys. Chem. B, 104, 1141 (2000).

    Article  CAS  Google Scholar 

  9. A. Ngo, and M. P. Pileni, Adv. Mater., 12, 276 (2000).

    Article  CAS  Google Scholar 

  10. P. A. Dresco, V. S. Zaitsev, R. J. Gambino, and B. Chu, Langmuir, 15, 1945 (1999).

    Article  CAS  Google Scholar 

  11. H. H. Sun and A. Manthiram, Chem. Mater., 29, 8486 (2017).

    Article  CAS  Google Scholar 

  12. J. Kim, H. Kang, N. Go, S. Jeong, T. Yim, Y.-N. Jo, K. T. Lee, and J. Mun, J. Mater. Chem. A, 5, 24892 (2017).

    Article  CAS  Google Scholar 

  13. J. Mun, J.-H. Park, W. Choi, A. Benayad, J.-H. Park, J.-M. Lee, S.-G. Doo, and S.M. Oh, J. Mater. Chem. A, 2, 19670 (2014).

    Article  CAS  Google Scholar 

  14. B. C. Yu, Y. Hwa, J. H. Kim, and H. J. Sohn, J. Power Sources, 260, 174 (2014).

    Article  CAS  Google Scholar 

  15. Y. X. Wang, J. Yang, S. L. Chou, H. K. Liu, W. X. Zhang, D. Zhao, and S. X. Dou, Nat. Commun., 6, 8689 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. C. Guan, X. Li, H. Yu, L. Mao, L. H. Wong, Q. Yan, and J. Wang, Nanoscale, 6, 13824 (2014).

    Article  CAS  PubMed  Google Scholar 

  17. G. D. Park, J. K. Lee, and Y. C. Kang, Adv. Funct. Mater., 27, 1603399 (2017).

    Article  CAS  Google Scholar 

  18. H. S. Jadhav, G. M. Thorat, J. Mun, and J. G. Seo, J. Power Sources, 302, 13 (2016).

    Article  CAS  Google Scholar 

  19. T. Yu, J. Moon, J. Park, Y. I. Park, H. B. Na, B. H. Kim, I. C. Song, W. K. Moon, and T. Hyeon, Chem. Mater., 21, 2272 (2009).

    Article  CAS  Google Scholar 

  20. H. Wang, L. F. Cui, Y. Yang, H. Sanchez Casalongue, J. T. Robinson, Y. Liang, Y. Cui, and H. Dai, J. Am. Chem. Soc., 132, 13978 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Y. Zhuang, Z. Ma, Y. Deng, X. Song, X. Zuo, X. Xiao, and J. Nan, Electrochim. Acta, 245, 448 (2017).

    Article  CAS  Google Scholar 

  22. M. Wang, Y. Huang, N. Zhang, K. Wang, X. Chen, and X. Ding, Chem. Eng. J., 334, 2383 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junyoung Mun or Taekyung Yu.

Additional information

Acknowledgments: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1D1A1B07048144, NRF-2014R1A5A1009799, and NRF-2016M3D1A1021140).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, B., Kim, J., Lee, J.Y. et al. Studies on the Change of Lithium Ion Battery Performance According to Length and Type of Surfactant on the Surface of Manganese Oxide Nanoparticles Prepared by Reverse Micelle Method. Macromol. Res. 26, 1167–1172 (2018). https://doi.org/10.1007/s13233-018-6147-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6147-4

Keywords

Navigation