Skip to main content
Log in

Fabrication of 3D Self-Assembled Nonmulberry Antheraea Mylitta (tasar) Fibroin Nonwoven Mats for Wound Dressing Applications

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

This research was focused on the two-step regeneration of Antheraea mylitta (tasar) fibroin in the form of electrospun 3D self-assembled nanofibrous nonwoven mats using ionic liquid and formic acid/CaCl2. The self-assembled structure of tasar nanofibrous nonwoven mats was dependent on the silk fibroin concentration and spinning voltage. The secondary conformation of tasar fibroin protein before and after electrospinning was analyzed by Fourier transformation infrared spectroscopy. The morphology of the nanofibrous mat was studied by scanning electron microscope. The self-assembled 3D tasar nonwoven nanofibrous construct was a highly porous and spongy structure with high water absorption and water vapor transmission. Highly porous 3D self-assembled tasar nonwoven nanofibrous construct favored good growth and proliferation of L929 skin fibroblast cells. Based on these properties, 3D self-assembled tasar nonwoven nanofibrous construct is a promising material for skin tissue engineering and wound dressing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. V. Falanga, Wound Repair Regen., 8, 347 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. T. A. Mustoe, K. O’Shauqhnessy, and O. Kloeters, Plast. Reconstr. Surg., 117, 35S (2006).

    Article  CAS  PubMed  Google Scholar 

  3. K. A. Rieger, N. P. Birch, and J. D. Schiffman, J. Mater. Chem. B, 1, 4531 (2013).

    Article  CAS  Google Scholar 

  4. C. M. Srivastava and R. Purwar, J. Appl. Polym. Sci., 134, 1 (2017).

    Article  CAS  Google Scholar 

  5. A. Formhals and R. S. Gastell, US1975504 A (1934).

    Google Scholar 

  6. B. Sun, Y. Z. Long, F. Yu, M. M. Li, H. D. Zhang, W. J. Li, and T. X. Xu, Nanoscale, 4, 2134 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. M. Li and Y. Long, Mater. Sci. Forum, 688, 95 (2011).

    Article  CAS  Google Scholar 

  8. H. Okuzaki, T. Takahashi, N. Miyajima, Y. Suzuki, and T. Kuwabara, Macromolecules, 39, 4276 (2006).

    Article  CAS  Google Scholar 

  9. B. Sun, Y. Z. Long, H. D. Zhang, M. M. Li, J. L. Duvail, X. Y. Jiang, and H. L. Yin, Prog. Polym. Sci., 39, 862 (2014).

    Article  CAS  Google Scholar 

  10. C. Acharya, S. K. Ghosh, and S. C. Kundu, Acta Biomater., 5, 429 (2009).

    Article  CAS  PubMed  Google Scholar 

  11. N. Panda, A. Biswas, L. B. Sukla, and K. Pramanik, Appl. Biochem. Biotechnol., 174, 2403 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. P. Bhattacharjee, B. Kundu, D. Naskar, T. K. Maiti, D. Bhattacharya, and S. C. Kundu, 103, 271 (2015).

  13. H. Zhao, X. Ren, Y. Zhang, and L. Huang, Bio-med Mater. Eng., 26, S89 (2015).

    Article  CAS  Google Scholar 

  14. C. M. Srivastava and R. Purwar, Mater. Sci. Eng. C, 68, 276 (2016).

    Article  CAS  Google Scholar 

  15. B. B. Mandal and S. C. Kundu, Biomaterials, 30, 2956 (2009).

    Article  CAS  PubMed  Google Scholar 

  16. E. S. Gadelmawla, M. M. Koura, T. M. Maksoud, M. ElewaI, and H. H. Soliman, J. Mater. Process Technol., 123, 133 (2002).

    Article  Google Scholar 

  17. S. E. Wharram, X. Zhang, D. L. Kaplan, and S. P. McCarthy, Macromol. Biosci., 10, 246 (2010).

    Article  CAS  PubMed  Google Scholar 

  18. Z. Pei, Q. Sun, X. Sun, Y. Wang, and P. Zhao, Biomed. Mater. Eng., 26, S111 (2015).

    PubMed  Google Scholar 

  19. M. A. Moraes, R. F. Weska, and M. M. Beppu, J. Biomed. Mater. Res. B: Appl. Biomater., 102, 869 (2014).

    Article  CAS  Google Scholar 

  20. J. Ayutsede, M. S. Gandhi, M. Sukigara, H. E. Micklus, and F. K. Chen, Polymer, 46, 1625 (2005).

    Article  CAS  Google Scholar 

  21. N. Kasoju, R. R. Bhonde, and U. Bora, J. Tissue Eng. Regen. Med., 3, 539 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. X. Wang, K. Zhang, M. Zhu, H. Yu, Z. Zhou, Y. Chen, and B. S. Hsiao, Polymer, 49, 2755 (2008).

    Article  CAS  Google Scholar 

  23. P. Bhattacharjee, B. Kundu, D. Naskar, T. K. Maiti, D. Bhattacharya, and S. C. Kundu, Biopolymers, 103, 271 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. N. N. Panda, A. Biswas, K. Pramanik, and S. Jonnalagadda, J. Biomed. Mater. Res., 103, 971 (2015).

    Article  CAS  Google Scholar 

  25. D. Chouhan, B. Chakraborty, S. K. Nandi, and B. B. Mandal, Acta Biomater., 48, 157 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. B. B. Mandal and S. C. Kundu, Macromol. Biosci., 8, 807 (2008).

    Article  CAS  PubMed  Google Scholar 

  27. Y. Zhang and S. J. Park, J. Polym. Sci. B, 55, 1890 (2017).

    Article  CAS  Google Scholar 

  28. R. R. Mallepally, M. A. Marin, V. Surampudi, B. Subia, R. R. Rao, S. C. Kundu, and M. A. McHugh, Biomed. Mater., 10, 035002 (2015).

    Article  CAS  PubMed  Google Scholar 

  29. B. Kundu and S. C. Kundu, Biomed. Mater., 8, 55003 (2013).

    Article  CAS  Google Scholar 

  30. J. Pan, N. Liu, H. Sun, and F. Xu, PLoS One, 9, e112885 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. J. E. W. Ahlfors and K. L. Billiar, Biomaterials, 28, 2183 (2007).

    Article  CAS  PubMed  Google Scholar 

  32. N. Panda, A. Biswas, L. B. Sukla, and K. Pramanik, Appl. Biochem. Biotechnol., 174, 2403 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roli Purwar.

Additional information

Acknowledgments: Authors would like to thank the Council of Scientific and Industrial Research (CSIR-HRDG) for providing SRF grant (08/133(0009)/2014-EMR-I). Authors acknowledge Dr. Amit Misra and coworker Mr. Deepak Sharma, CSIR-CDRI Lucknow for providing lab facilities to carry out cytocompatibility tests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, C.M., Purwar, R. Fabrication of 3D Self-Assembled Nonmulberry Antheraea Mylitta (tasar) Fibroin Nonwoven Mats for Wound Dressing Applications. Macromol. Res. 26, 872–881 (2018). https://doi.org/10.1007/s13233-018-6121-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6121-1

Keywords

Navigation