Advertisement

Salicylic Acid Based Hyperbranched Polyester: Synthesis, Characterization, Optical Properties and Antimicrobial Activity

  • Swaminathan Prabu
  • A. Sultan Nasar
  • Chickiyan Sivakumar
Article

Abstract

In this work, salicylic acid based hyperbranched polyester (HBPE) was synthesized by simple condensation method. The transformation from aliphatic nature to aromatic nature of polymer in the subsequent reaction steps were identified using FTIR and NMR results. The predictable structure and the molecular weight of the polymer were established with the help of LC-MS analysis. The amorphous nature, lowest glass transition temperature (~31 oC) and thermal behaviour of the polymer were traced using DSC and TGA. The polymer displayed the fluorescence maxima in the 450-525 nm range with relatively narrow peak widths indicating that they had pure and intense fluorescence. The antimicrobial activity of the salicylic acid based HBPE was evaluated against the Gram negative organisms like Escherichia coli and Salmonella paratyphi, Gram positive organisms as Bacillus subtilis and Staphylococcus aureus and fungi such as Aspergillus niger, and Candida albicans. The antimicrobial effect of polymer showed better efficiency than standard antibiotic drug such as Ciprofloxacin and Clotrimazole for both bacteria and fungi respectively except in the case of microorganisms such as Escherichia coli and Candida albicans. The minimum inhibitory concentration value of the polymer against Bacillus subtilis was tested and found to be 31.25 μg mL-1.

Keywords

salicylic acid hyperbranched polyester optical properties thermal properties antimicrobial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    C. Gao and D. Yan, Prog. Polym. Sci., 29, 183 (2004).CrossRefGoogle Scholar
  2. (2).
    C. Yashoda, K. B. Rajesh, M. Giridhar, and B. Bikramji, Biomacromolecules, 15, 863 (2014).CrossRefGoogle Scholar
  3. (3).
    D. Staneva, E. Vasileva-Tonkova, P. Bosch, P. Grozdanov, and I. Grabchev, Macromol. Res., (2018).Google Scholar
  4. (4).
    Y. Wu, G. Li, L. Bai, W. Li, S. Wang, X. Ba, G. Zhou, and H. Zhao, Macromol. Res., 22, 1196 (2014).CrossRefGoogle Scholar
  5. (5).
    C. Sivakumar and S. Nasar, J. Appl. Polym. Sci., 120, 725 (2010).CrossRefGoogle Scholar
  6. (6).
    T. Shanmugam, C. Sivakumar, and S. Nasar, J. Polym. Sci., Part A: Polym. Chem., 46, 5414 (2008).CrossRefGoogle Scholar
  7. (7).
    C. J. Hawker, R. Lee, and J. M. J. Frechet, J. Am. Chem. Soc., 113, 4583 (1990).CrossRefGoogle Scholar
  8. (8).
    S. R. Turner, B. I. Voit, and T. H Mourey, Macromolecules, 26, 4617 (1993).CrossRefGoogle Scholar
  9. (9).
    V. Percec and M. Kawasumi, Macromolecules, 25, 3843 (1992).CrossRefGoogle Scholar
  10. (10).
    K. E. Uhrich, C. J. Hawker, J. M. J. Frechet, and S. R. Turner, Macromolecules, 25, 4583 (1992).CrossRefGoogle Scholar
  11. (11).
    R. Spindler and J. M. J. Frechet, Macromolecules, 26, 4809 (1993).CrossRefGoogle Scholar
  12. (12).
    L. J Mathias and T. W Carothers, J. Am. Chem. Soc., 113, 4043 (1991).CrossRefGoogle Scholar
  13. (13).
    Y. H. Kim and O. W. Webster, J. Am. Chem. Soc., 112, 4592 (1990).CrossRefGoogle Scholar
  14. (14).
    Y. H. Kim, J. Am. Chem. Soc., 114, 4947 (1992).CrossRefGoogle Scholar
  15. (15).
    A. Kumar and S. Ramakrishnan, J. Chem. Soc. Chem. Commun., 0, 1453 (1993).CrossRefGoogle Scholar
  16. (16).
    H. Zhang, A. Patel, A. K. Gaharwar, S. M. Mihaila, G. Iviglia, S. Mukundan, H. Bae, H. Yang, and A. Khademhosseini, Biomacromolecules, 14, 1299 (2013).CrossRefGoogle Scholar
  17. (17).
    A. Prudencio, R. C. Schmeltzer, and K. E. Uhrich, Macromolecules, 38, 6895 (2005).CrossRefGoogle Scholar
  18. (18).
    A. L. Carbone, M. Song, and K. E. Uhrich, Biomacromolecules, 9, 1604 (2008).CrossRefGoogle Scholar
  19. (19).
    L. E. Rosenberg, A. L. Carbone, U. Romling, K. Uhrich, and M. Chikindas, Lett. Appl. Microbiol., 46, 593 (2008).CrossRefGoogle Scholar
  20. (20).
    C.T. Price, I. R. Lee, and J. E. Gustafson, Int. J. Biochem. Cell Biol., 32, 1029 (2000).CrossRefGoogle Scholar
  21. (21).
    P. J. Nowatzki, R. R. Koepsel, P. Stoodley, K. Min, A. Harper, H. Murata, J. Donfack, E. R. Hortelano, G. D. Ehrlich, and A. J. Russell, Acta Biomater., 8, 1869 (2012).CrossRefGoogle Scholar
  22. (22).
    B. E. Amborabe, P. Fleurat-Lessard, J. F. Chollet, and G. Roblin, Plant Physiol. Biochem., 40, 1051 (2002).CrossRefGoogle Scholar
  23. (23).
    K. Whitaker-Brothers and K. E. Uhrich, J. Biomed. Mater. Res. A, 70, 309 (2004).CrossRefGoogle Scholar
  24. (24).
    M. A. Woodruff and D. W. Hutmacher, Prog. Polym. Sci., 35, 1217 (2010).CrossRefGoogle Scholar
  25. (25).
    S. Alfei and S. Castellaro, Macromol. Res., 25, 1172 (2017)CrossRefGoogle Scholar
  26. (26).
    N. Joshi and M. Grinstaff, Curr. Top. Med. Chem., 8, 1225 (2008).CrossRefGoogle Scholar
  27. (27).
    E. Gillies and J. Frechet, Drug Discov. Today, 10, 35 (2005).CrossRefGoogle Scholar
  28. (28).
    M. A. Mintzer and M. W. Grinstaff, Chem. Soc. Rev., 40, 173 (2011).CrossRefGoogle Scholar
  29. (29).
    P. Makvandi, M. Ghaemy, A. A. Ghadiri, and M. Mohseni, J. Dent. Res., 94, 1401 (2015).CrossRefGoogle Scholar
  30. (30).
    M. Y. Ju and F. C. Chang, Polymer, 42, 5037 (2001).CrossRefGoogle Scholar
  31. (31).
    X. Z. Li, W. J. Zeng, Y. Zhang, Q. Hou, W. Yang, and Y. Cao, Eur. Polym. J., 41, 2923 (2005).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Swaminathan Prabu
    • 1
  • A. Sultan Nasar
    • 2
  • Chickiyan Sivakumar
    • 3
  1. 1.Research & Development CentreBharathiar UniversityCoimbatoreIndia
  2. 2.Department of Polymer ScienceUniversity of Madras, Guindy CampusChennaiIndia
  3. 3.Department of ChemistryJCT College of Engineering and TechnologyCoimbatoreIndia

Personalised recommendations