Macromolecular Research

, Volume 26, Issue 8, pp 690–695 | Cite as

Graft Copolymerization of 2-Hydroxyethyl Methacrylate onto Chitosan Using Radiation Technique for Release of Diclofenac

  • Luisa Islas
  • Guillermina Burillo
  • Alejandra Ortega


Chitosan (CS) was modified with 2-hydroxyethyl methacrylate (HEMA) by gamma radiation to improve its water absorption ability and use it as a drug delivery system. For this, HEMA was grafted by direct method onto dissolved CS (homogeneous) or powder CS (heterogeneous) using doses less than 20 kGy. The grafting percentage was easily controlled changing the homogeneity of system. Low and medium grafting percentages (20-70%) were obtained with the heterogeneous method, while the homogeneous method yielded higher grafting percentages (~340%). CS-g-HEMA was confirmed using infrared spectroscopy (ATR-FTIR), thermogravimetric analyses (TGA) and X-ray diffraction (XRD). In addition, the swelling behaviour, critical pH, and drug absorption, using diclofenac as a model, were also evaluated. Results show that the presence of HEMA had a positive effect on swelling and the drug uptake when low grafting percentages were used; CS-g-HEMA (17%) swelled in water (261%) and loaded better amounts of diclofenac (1.5 mg g-1) than CS (0.97 mg g-1).


radiation grafting chitosan drug delivery system 2-hydroxyethyl methacrylate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Y. Wei, W. Huang, Y. Zhou, S. Zhang, D. Hua, and X. Zhu, Int. J. Biol. Macromol., 62, 365 (2013).CrossRefPubMedGoogle Scholar
  2. (2).
    F. G. L. Medeiros Borsagli, A. A. P. Mansur, P. Chagas, L. C. A. Oliveira, and H. S. Mansur, React. Funct. Polym., 97, 37 (2015).CrossRefGoogle Scholar
  3. (3).
    C. Choi, J.-P. Nam, and J.-W. Nah, J. Ind. Eng. Chem., 33, 1 (2016).CrossRefGoogle Scholar
  4. (4).
    F. Crossier and C. Jerome, Eur. polym. J., 49, 780 (2013).CrossRefGoogle Scholar
  5. (5).
    R. LogithKumar, A. KeshavNarayan, S. Dhivya, A. Chawla, S. Saravanan, and N. Selvamurugan, Carbohydr. Polym., 151, 172 (2016).CrossRefPubMedGoogle Scholar
  6. (6).
    K. Gounder Subramanian, and V. Vijayakumar, Saudi Pharm. J., 20, 263 (2012).CrossRefGoogle Scholar
  7. (7).
    S. K. Kim, Chitin and Chitosan Derivatives: Advances in Drug Discovery and Developments, CRC Press, Boca Raton, 2014.Google Scholar
  8. (8).
    V. K. Thakur and M. K. Thakur, ACS Sustain. Chem. Eng., 2, 2637 (2014).CrossRefGoogle Scholar
  9. (9).
    A. Bhattacharya and B. N. Misra, Prog. Polym. Sci., 29, 767 (2004).CrossRefGoogle Scholar
  10. (10).
    J. G. Drobny, in Ionizing Radiation and Polymers: Principles, Technology, and Applications, Elsevier, Oxford, 2012, pp 1–298.Google Scholar
  11. (11).
    L. Y. Lim, E. Khor, and O. Koo, J. Biomed. Mater. Res., 43, 282 (1998).CrossRefPubMedGoogle Scholar
  12. (12).
    P. Taskin, H. Canisag, and M. Sen, Radiat. Phys. Chem., 94, 236 (2014).CrossRefGoogle Scholar
  13. (13).
    P. Ulanski and J. M. Rosiak, Radiat. Phys. Chem., 39, 53 (1992).Google Scholar
  14. (14).
    W. S. Choi, J. Ahn, D. W. Lee, M. W. Byun, and H. J. Park, Polym. Degrad. Stab., 78, 533 (2002).CrossRefGoogle Scholar
  15. (15).
    J. A. Montes, A. Ortega, and G. Burillo, J. Radioanal. Nucl. Chem., 303, 2143 (2015).Google Scholar
  16. (16).
    L. Pengfei, Z. Maolin, and W. Jilan, Radiat. Phys. Chem., 61, 149 (2001).CrossRefGoogle Scholar
  17. (17).
    J. P. Wang, Y. Z. Chen, X. W. Ge, and H. Q. Yu, Bioresour. Technol., 99, 3397 (2008).CrossRefPubMedGoogle Scholar
  18. (18).
    H. H. Sokker, A. M. A. Ghaffar, Y. H. Gad, and A. S. Aly, Carbohydr. Polym., 75, 222 (2009).CrossRefGoogle Scholar
  19. (19).
    M. F. A. Taleb, Polym. Bull., 61, 341 (2008).CrossRefGoogle Scholar
  20. (20).
    Y. H. Gad, Radiat. Phys. Chem., 77, 1101 (2008).CrossRefGoogle Scholar
  21. (21).
    C. He, M. Wang, X. Cai, X. Huang, L. Li, H. Zhu, J. Shen, and J. Yuan, Appl. Surf. Sci., 258, 755 (2011).CrossRefGoogle Scholar
  22. (22).
    D. K. Singh and A. R. Ray, J. Appl. Polym. Sci., 53, 1115 (1994).CrossRefGoogle Scholar
  23. (23).
    A. P. Leshchinskaya, N. M. Ezhova, and O. A. Pisarev, React. Funct. Polym., 102, 101 (2016).CrossRefGoogle Scholar
  24. (24).
    M. H. Casimiro, M. L. Botelho, J. P. Leal, and M. H. Gil, Radiat. Phys. Chem., 72, 731 (2005).CrossRefGoogle Scholar
  25. (25).
    A. Khan, T. Huq, R. A. Khan, D. Dussault, S. Salmieri, and M. Lacroix, Radiat. Phys. Chem., 81, 941 (2012).CrossRefGoogle Scholar
  26. (26).
    T. Wanjun, W. Cunxin, and C. Donghua, Polym. Degrad. Stab., 87, 389 (2005).CrossRefGoogle Scholar
  27. (27).
    K. Demirelli, M. F. Coşkun, E. Kaya, and M. Coşkun, Polym. Degrad. Stab., 78, 333 (2002).Google Scholar
  28. (28).
    M. L. Tsaih and R. H. Chen, J. Appl. Polym. Sci., 90, 3526 (2003).CrossRefGoogle Scholar
  29. (29).
    M. Tanaka, A. Mochizuki, N. Ishii, T. Motomura, and T. Hatakeyama, Biomacromolecules. 3, 36 (2002).CrossRefPubMedGoogle Scholar
  30. (30).
    S. Morita, Front. Chem., 2 (2014).Google Scholar
  31. (31).
    A. S. Carreira, F. A. M. M. Gonçalves, P. V. Mendonça, M. H. Gil, and J. F. J. Coelho, Carbohydr. Polym., 80, 618 (2010).CrossRefGoogle Scholar
  32. (32).
    S. Y. Tong, J. M. Pelet, and D. Putnam, Prog. Polym. Sci., 32, 799 (2007).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Luisa Islas
    • 1
  • Guillermina Burillo
    • 2
  • Alejandra Ortega
    • 2
  1. 1.School of ChemistryUniversity of Bristol, Cantock’s CloseBristolUK
  2. 2.Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias NuclearesUniversidad Nacional Autónoma de México, Ciudad UniversitariaCiudad de MéxicoMéxico

Personalised recommendations