Skip to main content
Log in

Close-Packed Colloidal Monolayers of Ultra-Smooth Gold Nanospheres by Controlled Trapping onto Polymer Thin Films

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

An Erratum to this article was published on 13 December 2018

This article has been updated

Abstract

Ultra-smooth and highly-spherical gold nanoparticles can form uniform colloidal film from evaporating sessile droplets on substrates at relatively high temperature, in which gold nanospheres are assembled at the air-liquid interface due to fast evaporation and further form multilayers on polystyrene-coated silicon wafer. Then, gold nanospheres at bottom layer are wetted by polystyrene upon thermal annealing around 80 °C and securely trapped in polymer solid film during cooling step. Finally, additionally stacked nanospheres in multilayer film are washed out by simple sonication leaving high-quality colloidal monolayers of gold nanospheres.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 13 December 2018

    Page 539, the 4th author’s affiliation should be corrected as follows:

    <Emphasis Type="Bold">Jun-Min Kim</Emphasis><Superscript><Emphasis Type="Bold">†,1</Emphasis></Superscript><Emphasis Type="Bold">, Dae-Woong Jung</Emphasis><Superscript><Emphasis Type="Bold">†,1</Emphasis></Superscript><Emphasis Type="Bold">, Gaehang Lee</Emphasis><Superscript><Emphasis Type="Bold">*,2</Emphasis></Superscript><Emphasis Type="Bold">, and Gi-Ra Yi</Emphasis><Superscript><Emphasis Type="Bold">*,1</Emphasis></Superscript>

    <Superscript>1</Superscript>School of Chemical Engineering, Sungkyunkwan University, Suwon, Gyeonggi 16419, Korea

    <Superscript>2</Superscript>Korea Basic Science Institute, Daejeon 34133, Korea

References

  1. S. J. Tan, M. J. Campolongo, D. Luo, and W. Cheng, Nat. Nanotechnol., 6, 268 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. F. Shafiei, F. Monticone, K. Q. Le, X.-X. Liu, T. Hartsfield, A. Alù, and X. Li, Nat. Nanotechnol., 8, 95 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Y. A. Urzhumov, G. Shvets, J. Fan, F. Capasso, D. Brandl, P. Nordlander, Opt. Express, 15, 14129 (2007).

    Article  PubMed  Google Scholar 

  4. C. Ciracì, R. T. Hill, J. J. Mock, Y. Urzhumov, A. I. Fernández-Domínguez, S. A. Maier, J. B. Pendry, A. Chilkoti, D. R. Smith, Probing the Ultimate Limits of Plasmonic Enhancement Science, 337, 1072 (2012).

    PubMed  Google Scholar 

  5. N. Engheta, Circuits with Light at Nanoscales: Optical Nanocircuits Inspired by Metamaterials Science, 317, 1698 (2007).

    CAS  PubMed  Google Scholar 

  6. M. Homberger and U. Simon, Phil. Trans. R. Soc. A, 368, 1405 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, Biosensing with Plasmonic Nanosensors Nat. Mater., 7, 442 (2008).

    CAS  PubMed  Google Scholar 

  8. M. Stratakis and H. Garcia, Chem. Rev., 112, 4469 (2012).

    Article  CAS  PubMed  Google Scholar 

  9. J. Zhao, S. C. Nguyen, R. Ye, B. Ye, H. Weller, G. A. Somorjai, A. P. Alivisatos, and F. D. Toste, ACS Cent. Sci., 3, 482 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. K. Matsuoka, K. Miyazaki, Y. Iriyama, K. Kikuchi, T. Abe, and Z. Ogumi, J. Phys. Chem. C, 111, 3171 (2007).

    Article  CAS  Google Scholar 

  11. Y.-J. Lee, N. B. Schade, L. Sun, J. A. Fan, D. R. Bae, M. M. Mariscal, G. Lee, F. Capasso, S. Sacanna, V. N. Manoharan, and G.-R. Yi, ACS Nano, 7, 11064 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. K. J. Park, J.-H. Huh, D.-W. Jung, J.-S. Park, G. H. Choi, G. Lee, P. J. Yoo, H.- G. Park, G.-R. Yi, and S. Lee, Sci. Rep., 7, 6045 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. M. Kim, S. Lee, J. Lee, D. K. Kim, Y. J. Hwang, G. Lee, G.-R. Yi, and Y. J. Song, Opt. Express, 23, 12766 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. D.-K. Kim, Y. J. Hwang, C. Yoon, H.-O. Yoon, K. S. Chang, G. Lee, S. Lee, and G.-R. Yi, Phys. Chem. Chem. Phys., 17, 20786 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. S. Lee, Opt. Express, 23, 28170 (2015).

    Article  CAS  PubMed  Google Scholar 

  16. M. Kolle and S. Lee, Adv. Mater., 30, 1702669 (2018).

    Article  CAS  Google Scholar 

  17. S. Lee and J, Kim, Opt. Express, 23, 21809 (2015).

    Article  CAS  PubMed  Google Scholar 

  18. Y. Montelongo, D. Sikdar, Y. Ma, A. J. S. McIntosh, L. Velleman, A. R. Kucernak, J. B. Edel, and A. A. Kornyshev, Nat. Mater., 16, 1127 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. L. Zhang, C. Guan, Y. Wang, and J. Liao, Nanoscale, 8, 5928 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. E. W. Foster, G. J. Kearns, S. Goto, and J. E. Hutchison, Adv. Mater., 17, 1542 (2005).

    Article  CAS  Google Scholar 

  21. C. H. Lalander, Y. Zheng, S. Dhuey, S. Cabrini, and U. Bach, ACS Nano, 4, 6153 (2010).

    Article  CAS  PubMed  Google Scholar 

  22. H. Kim, F. Boulogne, E. Um, I. Jacobi, E. Button, and H. A. Stone, Phys. Rev. Lett., 116, 124501 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Y. Li, Q. Yang, M. Li, and Y. Song, Sci. Rep., 6, 24628 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Y. Chai, T. Salez, T. D. McGraw, M. Benzaquen, K. Dalnoki-Veress, E. Raphael, and J. A. Forrest, Science, 343, 994 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. C. Vericat, M. E. Vela, G. Benitez, P. Carro, and R. C. Salvarezza, Chem. Soc. Rev., 39, 1805 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. N. Garg, E. Carrasquillo-Molina, and T. R. Lee, Langmuir, 18, 2717 (2002).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gaehang Lee or Gi-Ra Yi.

Additional information

Acknowledgments: This work was supported by Samsung Research Funding Center for Samsung Electronics under Project Number SRFCMA1402-09. G.L. acknowledges support from Korea Basic Science Institute (KBSI grant no. D38614).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, JM., Jung, DW., Lee, G. et al. Close-Packed Colloidal Monolayers of Ultra-Smooth Gold Nanospheres by Controlled Trapping onto Polymer Thin Films. Macromol. Res. 26, 539–543 (2018). https://doi.org/10.1007/s13233-018-6077-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6077-1

Keywords

Navigation