Investigation into the Gelation of Polyacrylonitrile Solution Induced by Dry-jet in Spinning Process and Its Effects on Diffusional Process in Coagulation and Structural Properties of Carbon Fibers

  • Keon-Ah Shin
  • Sejoon Park
  • Huong Thi Bich Nguyen
  • Joong Hee Lee
  • Sungho Lee
  • Han-Ik Joh
  • Seong Mu Jo
Article
  • 10 Downloads

Abstract

The jet effect in dry-jet wet spinning of a polyacrylonitrile (PAN) solution was investigated. The two parameters, jet-stretch ratio and air gap length, of the jet were controlled to elucidate each effect on PAN precursors and resulting carbon fibers. Excessively high jet-stretch ratio (>4) or air-gap (>1 cm) resulted in the development of the internal pore structure in PAN precursors. The pores remained even after the densification by thermal treatment acting as defects for poor tensile properties of carbon fibers (CFs). It was revealed that two parameters critically controlled the bidirectional diffusion of both solvent and non-solvent by determining the degree of the surface gelation at the jet. Excessively high jet-stretch ratio or high air-gap length created a thick solid skin on extruded dope limiting solvent/non-solvent diffusion. As a method to limit the development of the pores under the condition of high jet stretch ratio (>4), raising the dope temperature for limiting the degree of gelation at the jet was attempted and successfully manufactured mechanically improved fiber with a dense structure without pores under high jet-stretch condition. The study suggests that the high quality PAN precursors for high performance CFs can be manufactured under high jet-stretch ratio condition with proper management on gelation at the jet.

Keywords

polyacrylonitrile dry-jet wet spinning process gelation diffusion carbon fiber 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    Y. Zhang, X. Li, X. Ge, F. Deng, and U. R. Cho, Macromol. Res., 23, 952 (2015).CrossRefGoogle Scholar
  2. (2).
    Y. Zhang and S.-J. Park, J. Polym. Sci., Part B: Polym. Phys., 55, 1890 (2017).CrossRefGoogle Scholar
  3. (3).
    A. Gupta, D. Paliwal, and P. Bajaj, J. Macromol. Sci., Part C: Polym. Rev., 31, 1 (1991).Google Scholar
  4. (4).
    S. Kumar, D. Anderson, and A. Crasto, J. Mater. Sci., 28, 423 (1993).CrossRefGoogle Scholar
  5. (5).
    P. Baja, T. Sreekumar, and K. Sen, J. Appl. Polym. Sci., 86, 773 (2002).CrossRefGoogle Scholar
  6. (6).
    L. Tan, A. Wan, and D. Pan, Mater. Lett., 65, 887 (2011).CrossRefGoogle Scholar
  7. (7).
    Y. Arai, Nippon Steel Technical Report, 59, 65 (1993).Google Scholar
  8. (8).
    H. C. Liu, A. T. Chien, B. A. Newcomb, Y. Liu, S. Kumar, ACS Sustain. Chem. Eng., 3, 1943 (2015).CrossRefGoogle Scholar
  9. (9).
    E. Frank, L. M. Steudle, D. Ingildeev, J. M. Spörl, M. R. Buchmeiser, Ang. Chem. Int. Ed., 53, 5262 (2014).CrossRefGoogle Scholar
  10. (10).
    X. Zeng, J. Hu, J. Zhao, Y. Zhang, and D. Pan, J. Appl. Polym. Sci., 106, 2267 (2007).CrossRefGoogle Scholar
  11. (11).
    C. Hou, R. J. Qu, Y. Liang, and C. G. Wang, J. Appl. Polym. Sci., 96, 1529 (2005).CrossRefGoogle Scholar
  12. (12).
    Q. Baojun, P. Ding, and W. Zhenqiou, Adv. Polym. Technol., 6, 509 (1986).CrossRefGoogle Scholar
  13. (13).
    C. Wilms, G. Seide, and T. Gries, Chem. Eng. Transactions, 32, 1609 (2013).Google Scholar
  14. (14).
    X. Zeng, J. Chen, J. Zhao, C. Wu, D. Pan, and N. Pan, J. Appl. Polym. Sci., 114, 3621 (2009).CrossRefGoogle Scholar
  15. (15).
    A. Ziabicki, Fundamentals of Fibre Formation: The Science of Fibre Spinning and Drawing, John Wiley & Sons, Ltd., Chichester, 1976.Google Scholar
  16. (16).
    J. S. Tsai, J. Mater. Sci. Lett., 11, 140 (1992).CrossRefGoogle Scholar
  17. (17).
    C. Lai, G. Zhong, Z. Yue, G. Chen, L. Zhang, A. Vakili, Y. Wang, L. Zhu, J. Liu, and H. Fong, Polymer, 2, 19 (2011).Google Scholar
  18. (18).
    H. Pan, L. Li, L. Hu, and X. Cui, Polymer, 47, 4901 (2006).CrossRefGoogle Scholar
  19. (19).
    S. Z. Cheng, Z. Wu, and E. A. Mark, Polymer, 32, 1803 (1991).CrossRefGoogle Scholar
  20. (20).
    M. Yu, C. Wang, Y. Bai, Y. Wan, and Y. Xu, Polym. Bull., 57, 757 (2006).CrossRefGoogle Scholar
  21. (21).
    A. Gupta and I. R. Harrison, Carbon, 34, 1427 (1996).CrossRefGoogle Scholar
  22. (22).
    J. S. Tsai and C. H. Lin, J. Appl. Polym. Sci., 43, 679 (1991).CrossRefGoogle Scholar
  23. (23).
    Z. Xu, L. Liu, Y. Huang, Y. Sun, X. Wu, and J. Li, Mater. Lett., 63, 1814 (2009).CrossRefGoogle Scholar
  24. (24).
    M. A. Kim, D. Jang, S. Tejima, R. Cruz-Silva, H. I. Joh, H. C. Kim, S. Lee, and M. Endo, Sci. Rep., 6, 22988 (2016).CrossRefGoogle Scholar
  25. (25).
    E. Fitzer, J. L. Figueiredo, C. A. Bernardo, R. T. K. Baker, and K. J. Hüttinger, Eds., Carbon Fibers Filaments and Composites, Springer Netherlands, Dordrecht, 1990.Google Scholar
  26. (26).
    E. Frank, F. Hermanutz, and M. R. Buchmeiser, Macromol. Mater. Eng., 297, 493 (2012).CrossRefGoogle Scholar
  27. (27).
    X. Huang, Materials, 2, 2369 (2009).CrossRefGoogle Scholar
  28. (28).
    E. A. Morris, M. C. Weisenberger, S. B. Bradley, M. G. Abdallah, S. J. Mecham, P. Pisipati, and J. E. McGrath, Polymer, 55, 6471 (2014).CrossRefGoogle Scholar
  29. (29).
    E. A. Morris, M. C. Weisenberger, M. G. Abdallah, F. Vautard, H. Grappe, S. Ozcan, F. L. Paulauskas, C. Eberle, D. Jackson, S. J. Mecham, and A. K. Naskar, Carbon, 101, 245 (2016).CrossRefGoogle Scholar
  30. (30).
    X. Hou, X. Yang, L. Zhang, E. Waclawik, and S. Wu, Mater. Des., 31, 1726 (2010).CrossRefGoogle Scholar
  31. (31).
    T. F. Meyabadi, F. Dadashian, G. M. M. Sadeghi, and H. E. Z. Asl, Powder Technol., 261, 232 (2014).CrossRefGoogle Scholar
  32. (32).
    A. Boukhachem, C. Bouzidi, R. Boughalmi, R. Ouerteni, M. Kahlaoui, B. Ouni, H. Elhouichet, and M. Amlouk, Ceram. Int., 40, 13427 (2014).CrossRefGoogle Scholar
  33. (33).
    T. Yano, Y. Higaki, D. Tao, D. Murakami, M. Kobayashi, N. Ohta, J. I. Koike, M. Horigome, H. Masunaga, H. Ogawa, Y. Ikemoto, T. Moriwaki, and A. Takahara, Polymer, 53, 4702 (2012).CrossRefGoogle Scholar
  34. (34).
    S. Gu, J. Ren, and Q. Wu, Synth. Met., 155, 157 (2005).CrossRefGoogle Scholar
  35. (35).
    J. Crank, The Mathematics of Diffusion, Oxford University Press, London, 1979.Google Scholar
  36. (36).
    C. Hou, R. Qu, C. Wang, and L. Ying, J. Appl. Polym. Sci., 101, 3616 (2006).CrossRefGoogle Scholar
  37. (37).
    C. Hou, R. J. Qu, Y. Liang, and C. G. Wang, J. Appl. Polym. Sci., 96, 1529 (2005).CrossRefGoogle Scholar
  38. (38).
    M. MInus and S. Kumar, JOM, 57, 52 (2005).CrossRefGoogle Scholar
  39. (39).
    Z. Wangxi, L, Jie, and W. Gang, Carbon, 41, 2805 (2003).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Keon-Ah Shin
    • 1
    • 2
  • Sejoon Park
    • 1
  • Huong Thi Bich Nguyen
    • 1
    • 3
  • Joong Hee Lee
    • 2
  • Sungho Lee
    • 1
    • 3
  • Han-Ik Joh
    • 4
  • Seong Mu Jo
    • 1
    • 3
  1. 1.Carbon Composite Materials Research Center, Institute of Advanced Composite MaterialsKorea Institute of Science and TechnologyJeonbukKorea
  2. 2.Polymer Nano Science and TechnologyChunbuk National UniversityJeonbukKorea
  3. 3.Department of Nanomaterials EngineeringKorea University of Science and TechnologyDaejeonKorea
  4. 4.Konkuk University, Department of Energy EngineeringSeoulKorea

Personalised recommendations