Macromolecular Research

, Volume 26, Issue 6, pp 484–492 | Cite as

An Empirical Model for the Viscosity of Reactive Polymeric Fluids

  • Jung-Eun Bae
  • Ji-Sun Choi
  • Kwang Soo Cho


The rheological properties of reactive materials are of importance in industrial or academic purpose. However, it is hard to characterize these properties for overall range of reaction, because curing reaction accompanies enormous and intricate structural changes. Consequently, it is demanded to establish the model which elucidates the rheological changes as a function of degree of reaction. In this study, we observed the curing behavior of novolac epoxy/phenol novolac/triphenylphosphane (TPP) system in stoichiometrically balanced state. We developed a new empirical model describing the change of rheological profile of epoxy system for the wider range of degree of reaction, α. Newly suggested empirical equation as a function of α is applied to analyze the evolution of rheological variables during polymerization of polymethyl methacrylate. It is shown that the new empirical model is suitable to analyze the viscosity profile for systems including reactions such as curing or polymerization.


reactive polymeric fluid empirical model thermosets chemorheology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    I. C. Choy and D. J. Plazek, J. Polym. Sci., Part B: Polym. Phys., 24, 1303 (1986).CrossRefGoogle Scholar
  2. (2).
    H. H. Winter and F. Chambon, J. Rheol., 30, 367 (1986).CrossRefGoogle Scholar
  3. (3).
    H. H. Winter, Polym. Eng. Sci., 27, 1698 (1987).CrossRefGoogle Scholar
  4. (4).
    J. M. Castro and C. W. Macosko, Soc. Plast. Eng. Tech. Pap., 26, 434 (1980).Google Scholar
  5. (5).
    N. Kiuna, C. J. Lawrence, Q. P. V. Fontana, P. E. Lee, T. Selerland, and P. D. M. Spelt, Compos. Part A: Appl. Sci., 33, 1497 (2002).CrossRefGoogle Scholar
  6. (6).
    M. Ivankovic, L. Incarnato, J. M. Kenny, and L. Nicolais, J. Appl. Polym. Sci., 90, 3012 (2003).CrossRefGoogle Scholar
  7. (7).
    B. J. Love, F. Teyssandier, Y. Y. Sun, and C. P. Wong, Macromol. Mater. Eng., 293, 832 (2008).CrossRefGoogle Scholar
  8. (8).
    F. Teyssandier, M. Lvankovic, and B. J. Love, J. Appl. Polym. Sci., 115, 1671 (2010).CrossRefGoogle Scholar
  9. (9).
    M. B. Roller, Polym. Eng. Sci., 15, 406 (1975).CrossRefGoogle Scholar
  10. (10).
    Han, S., W. G. Kim, H. G. Yoon, and T. J. Moon, J. Polym. Sci., Part A: Polym. Chem., 36, 773 (1998).CrossRefGoogle Scholar
  11. (11).
    R. Muller, E. Gérard, P. Dugand, P. Rempp, and Y. Gnanou, Macromolecules, 24, 1321 (1991).CrossRefGoogle Scholar
  12. (12).
    M. E. de Rosa, M. Mours, and H. H. Winter, Polym. Gels Networks, 5, 69 (1994).CrossRefGoogle Scholar
  13. (13).
    F. Chambon and H. H. Winter, Polym. Bull., 13, 499 (1985).CrossRefGoogle Scholar
  14. (14).
    D.-S. Lee and C. D. Han, J. Appl. Polym. Sci., 34, 1235 (1987).CrossRefGoogle Scholar
  15. (15).
    S. A. Bidtrup and C. W. Macosko, J. Polym. Sci., Part B, 28, 691 (1990).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.LG Household & Health CareResearch CenterDaejeonKorea
  2. 2.Department of Polymer Science and EngineeringKyungpook National UniversityDaeguKorea

Personalised recommendations