Advertisement

Macromolecular Research

, Volume 26, Issue 5, pp 466–471 | Cite as

Fabrication of Homogeneous Metal-Organic Hybrid Composite from Copper Containing Methacrylate Copolymer Through Layer-by-Layer Film Processing and e-Beam Irradiation

  • Hyojin Kim
  • Manjae Gil
  • Sang-Ho Cha
  • Kyung Jin Lee
Article
  • 38 Downloads

Abstract

Nanocomposites with homogeneous dispersion of metal species have attained great attention due to their potential applications in various fields. Here, copper ion containing methacrylate copolymers were prepared by polymerization of copper methacrylate complex. The copper ion containing hybrid nanocomposite films were fabricated by layer-by-layer (LBL) assembly of copper ion containing methacrylate copolymers and transparent polyamic acid (PAA). LBL process was carried out with spin-assisted coating of PAA and dip-coating of copper ion containing methacrylate copolymers. The copper ion containing composite films were modified by thermal treatment and e-beam irradiation to reduce metal ions, resulting in higher mechanical properties. Modulus of modified copper metal-organic hybrid composite films was investigated by nano-indentation experiment.

Keywords

adhesion composite electron beam irradiation LB films metal-polymer complexes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2018_6064_MOESM1_ESM.pdf (1018 kb)
Supporting Information

References

  1. (1).
    N. Jouault, P. Vallat, F. Dalmas, S. Said, J. Jestin, and F. Boué, Macromolecules, 42, 2031 (2009).CrossRefGoogle Scholar
  2. (2).
    P. Judeinstein and C. Sanchez, J. Mater. Chem., 6, 511 (1996).CrossRefGoogle Scholar
  3. (3).
    W. Luo, B. Zhang, H. Zou, M. Liang, and Y. Chen, J. Ind. Eng. Chem., 51, 129 (2017).CrossRefGoogle Scholar
  4. (4).
    E. Fosso-Kankeu, H. Mittal, F. Waanders, and S. S. Ray, J. Ind. Eng. Chem., 48, 151 (2017).CrossRefGoogle Scholar
  5. (5).
    M. Xiang, C. Li, and L. Ye, J. Ind. Eng. Chem., 50, 123 (2017).CrossRefGoogle Scholar
  6. (6).
    M. Choudhury, S. Mohanty, and S. K. Nayak, Polym. Compos., 34, 1 (2013).CrossRefGoogle Scholar
  7. (7).
    Pradhan, D. Khastgir, and T. K. Chaki, Polym. Compos., 36, 566 (2015).CrossRefGoogle Scholar
  8. (8).
    S.-H. Cha, J. Bae, and K. J. Lee, Polym. Eng. Sci., 55, 1906 (2015).CrossRefGoogle Scholar
  9. (9).
    H. Jiang, K.-S. Moon, Y. Li, and C. P. Wong, Chem. Mater., 18, 2969 (2006).CrossRefGoogle Scholar
  10. (10).
    V. Georgakilas, D. Gournis, V. Tzitzios, L. Pasquato, D. M. Guldie, and M. Prato, J. Mater. Chem., 17, 2679 (2007).CrossRefGoogle Scholar
  11. (11).
    J. Zhou, J. Ralston, R. Sedev, and D. A. Beattie, J. Colloid Interface Sci., 331, 251 (2009).CrossRefGoogle Scholar
  12. (12).
    B. Azhdar, B. Stenberg, and L. Kari, Polym. Compos., 29, 252 (2008).CrossRefGoogle Scholar
  13. (13).
    S.-H. Cha, G. Huh, and J.-C. Lee, J. Ind. Eng. Chem., 20, 682 (2014).CrossRefGoogle Scholar
  14. (14).
    M. Gil, H. Kim, J. Bae, S.-H. Cha, and K. J. Lee, Polymer, 77, 297 (2015).CrossRefGoogle Scholar
  15. (15).
    M. F. Semmelhack, P. M. Helquist, and L. D. Jones, J. Am. Chem. Soc., 93, 5908 (1971).CrossRefGoogle Scholar
  16. (16).
    P. Macchi, D. M. Proserpio, and A. Sironi, J. Am. Chem. Soc., 120, 1447 (1998).CrossRefGoogle Scholar
  17. (17).
    T. Lan, P. D. Kaviratna, and T. J. Pinnavaia, Chem. Mater., 6, 573 (1994).CrossRefGoogle Scholar
  18. (18).
    J. U. Otaigbe, V. E. Yudin, and V. N. Artemieva, Polym. Compos., 22, 155 (2001).CrossRefGoogle Scholar
  19. (19).
    T. Agag., T. Koga, and T. Takeichi, Polymer, 42, 3399 (2001).CrossRefGoogle Scholar
  20. (20).
    L. M. Minsk, C. Kotlarchik, G. N. Meyer, and W. O. Kenyon, J. Polym. Sci., Part A: Polym. Chem., 12, 133 (1974).Google Scholar
  21. (21).
    L. Xu, L. Che, J. Zheng, G. Huang, X. Wu, P. Chen, L. Zhang, and Q. Hu, RSC Adv., 4, 33269 (2014).CrossRefGoogle Scholar
  22. (22).
    E. F. Tai, J. A. Caskey, and B. D. Allison, J. Polym. Sci., Part A: Polym. Chem., 24, 567 (1986).CrossRefGoogle Scholar
  23. (23).
    S.-S. Lee, J.-D. Hong, C. H. Kim, K. Kim, J. P. Koo, and K.-B. Lee, Macromolecules, 34, 5358 (2001).CrossRefGoogle Scholar
  24. (24).
    K. Ariga, J. P. Hilla, and Q. Jia, Phys. Chem. Chem. Phys., 9, 2319 (2007).CrossRefGoogle Scholar
  25. (25).
    J. Cho, K. Char, J.-D. Hong, and K.-B. Lee, Adv. Mater., 13, 1076 (2003).CrossRefGoogle Scholar
  26. (26).
    P. A. Small, J. Appl. Chem., 3, 71 (1953).CrossRefGoogle Scholar
  27. (27).
    J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, Nano Lett., 8, 689 (2008).CrossRefGoogle Scholar
  28. (28).
    H. Cong, J. Zhang, M. Radosz, and Y. Shen, J. Membr. Sci., 294, 178 (2007).CrossRefGoogle Scholar
  29. (29).
    Y.-C. Kung and S.-H. Hsiao, J. Mater. Chem, 21, 1746 (2011).CrossRefGoogle Scholar
  30. (30).
    Q. Lu, J. Fang, J. Yang, X. Feng, J. Wang, and Y. Nuli, RSC Adv., 4, 10280 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Chemical EngineeringKyonggi UniversitySuwon, GyeonggiKorea
  2. 2.Department of Fine Chemical Engineering and Applied Chemistry, College of EngineeringChungnam National UniversityYuseong-gu, DaejeonKorea

Personalised recommendations