Macromolecular Research

, Volume 26, Issue 5, pp 418–425 | Cite as

The Antimicrobial Behavior of Polyelectrolyte Chitosan-Styrene Maleic Anhydride Nano Composites

  • Eman A. Ali
  • Mohamed Eweis
  • Said Elkholy
  • Mohamed N. Ismail
  • Maher Elsabee


A new antimicrobial polyelectrolyte polymer was prepared based on chitosan and alternating styrene maleic anhydride (SMA) copolymer. The SMA was subjected to alkaline hydrolysis, followed by blending with chitosan and chitosan in the nano form which has been prepared by self-assembly technique with particle size 46±0.08 nm. The composition was investigated and characterized by spectral and, thermogravimetric analysis, dynamic light scattering, and transmission electron microscopy. The nano polyelectrolyte complexes and composite were screened for their antimicrobial behavior and showed excellent antifungal as well as antibacterial efficacy against four bacterial and fungal strains. The hydrolyzed styrene maleic anhydride-nano-chitosan exhibited higher antimicrobial activity than the hydrolyzed styrene maleic anhydride-chitosan.


styrene maleic anhydride copolymer chitosan polyelectrolyte nano-composites antimicrobial properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    N. Nurdin, G. Helary, and G. Sauvet, J. Appl. Polym. Sci., 50, 671 (1993).CrossRefGoogle Scholar
  2. (2).
    G. Sauvet, S. Dupond, K. Kazmierski, and J. Chojnowski, J. Appl. Polym. Sci., 75, 1005 (2000).CrossRefGoogle Scholar
  3. (3).
    J.-H. Jeong, Y.-S. Byoun, and Y.-S. Lee, React. Funct. Polym., 50, 257 (2002).CrossRefGoogle Scholar
  4. (4).
    L. Kou, Preparation and Application of Regenerable N-Halamine Biocidal Materials, Ph. D. Dissertation, Auburn University, 2009.Google Scholar
  5. (5).
    E. S. Abdou, K. S. A. Nagy, and M. Z. Elsabee, Bioresour. Technol., 99, 1359 (2008).CrossRefGoogle Scholar
  6. (6).
    N. H. Marei, E. A. El-Samie, T. Salah, G. R. Saad, and A. H. M. Elwahy, Int. J. Biol. Macromol., 82, 871 (2016).CrossRefGoogle Scholar
  7. (7).
    J. Synowiecki and N. A. A. Q. Al-Khateeb, Food Chem., 60, 605 (1997).CrossRefGoogle Scholar
  8. (8).
    M. N. V. R. Kumar, React. Funct. Polym., 46, 1 (2000).CrossRefGoogle Scholar
  9. (9).
    S. S. Elkholy, K. D. Khalil, and M. Z. Elsabee, J. Appl. Polym. Sci., 99, 3308 (2006).CrossRefGoogle Scholar
  10. (10).
    S. Elkholy, K. D. Khalil, M. Z. Elsabee, and M. Eweis, J. Appl. Polym. Sci., 103, 1651 (2007).CrossRefGoogle Scholar
  11. (11).
    L. Qi, Z. Xu, X. Jiang, C. Hu, and X. Zou, Carbohydr. Res., 339, 2693 (2004).CrossRefGoogle Scholar
  12. (12).
    A. Sorrentino, G. Gorrasi, and V. Vittoria, Trends Food Sci. Technol., 18, 84 (2007).CrossRefGoogle Scholar
  13. (13).
    L. E. Chavez de Paz, A. Resin, K. A. Howard, D. S. Sutherland, and P. L. Wejse, Appl. Environ. Microbiol., 77, 3892 (2011).CrossRefGoogle Scholar
  14. (14).
    M. Z. Elsabee and E. S. Abdou, Mater. Sci. Eng. C, 33, 1819 (2013).CrossRefGoogle Scholar
  15. (15).
    A. Hebeish, S. Sharaf, and A. Farouk, Int. J. Biol. Macromol., 60, 10 (2013).CrossRefGoogle Scholar
  16. (16).
    S. W. Ali, M. Joshi, and S. Rajendran, Int. J. Nanosci., 10, 979 (2011).CrossRefGoogle Scholar
  17. (17).
    K. Vellingiri, T. Ramachandran, and M. Senthilkumar, Nanosci. Nanotechnol. Lett., 5, 519 (2013).CrossRefGoogle Scholar
  18. (18).
    M. R. Noor El-Din, R. E. Morsi, and M. Z. Elsabee, J. Appl. Polym. Sci., 108, 2301 (2008).CrossRefGoogle Scholar
  19. (19).
    A. M. Al-Sabagh, M. R. Noor El-Din, R. E. Morsi, and M. Z. Elsabee, J. Pet. Sci. Eng., 65, 139 (2009).CrossRefGoogle Scholar
  20. (20).
    H. Maeda, M. Ueda, T. Morinaga, and T. Matsumoto, J. Med. Chem., 28, 455 (1985).CrossRefGoogle Scholar
  21. (21).
    E. Bacu, G. Charlotte, A. Couture, P. Grandclaudon, G. Singurel, and A. Carpov, Eur. Polym. J., 38, 1509 (2002).CrossRefGoogle Scholar
  22. (22).
    W. Fang, Y. Cai, X. Chen, R. Su, T. Chen, N. Xia, L. Li, Q. Yang, J. Han, and S. Han, Bioorg. Med. Chem. Lett., 19, 1903 (2009).CrossRefGoogle Scholar
  23. (23).
    A. Khazaei, S. Saednia, J. Saien, M. Kazem-rostami, M. Sadeghpour, M. K. Borazjani, and F. Abbasi, J. Braz. Chem. Soc., 24, 1109 (2013).Google Scholar
  24. (24).
    W. J. Cloete, L. Verwey, and B. Klumperman, Eur. Polym. J., 49, 1080 (2013).CrossRefGoogle Scholar
  25. (25).
    M. Ignatova, O. Stoilova, N. Manolova, N. Markova, and I. Rashkov, Macromol. Biosci., 10, 944 (2010).CrossRefGoogle Scholar
  26. (26).
    M. Ignatova, Z. Petkova, N. Manolova, N. Markova, and I. Rashkov, Macromol. Biosci., 12, 104 (2012).CrossRefGoogle Scholar
  27. (27).
    J. S. Patel, S. V Patel, N. P. Talpada, and H. A. Patel, Angew. Makromol. Chem., 271, 24 (1999).CrossRefGoogle Scholar
  28. (28).
    R. R. De Chimie, I. Popescu, D. M. Suflet, I. M. Pelin, and G. C. Chitanu, Rev. Roum. Chim., 56, 173 (2011).Google Scholar
  29. (29).
    A. R. Long, C. C. O’Brien, K. Malhotra, C. T. Schwall, A. D. Albert, A. Watts, and N. N. Alder, BMC Biotechnol., 13, 41 (2013).CrossRefGoogle Scholar
  30. (30).
    S. Scheidelaar, M. C. Koorengevel, J. D. Pardo, J. D. Meeldijk, E. Breukink, and J. A. Killian, Biophys. J., 108, 279 (2015).CrossRefGoogle Scholar
  31. (31).
    D. J. K. Swainsbury, S. Scheidelaar, R. Van Grondelle, J. A. Killian, and M. R. Jones, Angew. Chem. Int. Ed., 53, 11803 (2014).CrossRefGoogle Scholar
  32. (32).
    R. M. Ottenbrite, L. A. Utracki, and S. Inoue, Current Topics in Polymer Science: Rheology and Polymer Processing, Multiphase Systems, Hanser Publishers, Munich, 1987.Google Scholar
  33. (33).
    L. A. Utracki and B. D. Favis, Polymer Alloys and Blends, Marcel Dekker, New York, 1989.Google Scholar
  34. (34).
    J. Washiyama, E. J. Kramer, and C. Y. Hui, Macromolecules, 26, 2928 (1993).CrossRefGoogle Scholar
  35. (35).
    I. Insua, A. Wilkinson, and F. Fernandez-Trillo, Eur. Polym. J., 81, 198 (2016).CrossRefGoogle Scholar
  36. (36).
    J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Polymer (Guildf), 52, 5 (2011).CrossRefGoogle Scholar
  37. (37).
    M. R. Nikpour, S. M. Rabiee, and M. Jahanshahi, Compos. Part B: Eng., 43, 1881 (2012).CrossRefGoogle Scholar
  38. (38).
    C. Demitri, A. Moscatello, A. Giuri, M. G. Raucci, and C. E. Corcione, Polymers (Basel)., 7, 2584 (2015).CrossRefGoogle Scholar
  39. (39).
    A. Samzadeh-kermani, and N. Esfandiary, Adv. Nanoparticles, 18 (2016).Google Scholar
  40. (40).
    X. Lai, C. Sun, H. Tian, W. Zhao, and L. Gao, Int. J. Pharm., 352, 66 (2008).CrossRefGoogle Scholar
  41. (41).
    V. R. Pereira, A. M. Isloor, U. K. Bhat, and A. F. Ismail, Desalination, 351, 220 (2014).CrossRefGoogle Scholar
  42. (42).
    N. A. Samoilova, M. A. Krayukhina, and I. A. Yamskov, Appl. Biochem. Microbiol., 38, 386 (2002).CrossRefGoogle Scholar
  43. (43).
    M. R. de Moura, F. A. Aouada, and L. H. C. Mattoso, J. Colloid Interface Sci., 321, 477 (2008).CrossRefGoogle Scholar
  44. (44).
    E. S. Abdou, S. S. Elkholy, M. Z. Elsabee, and M. Eweis, J. Appl. Polym. Sci., 108, 2290 (2008).CrossRefGoogle Scholar
  45. (45).
    P. F. Olurinola, J. O. Ehinmidu, and J. J. Bonire, Appl. Envir. Microbiol., 58, 758 (1992). (accessed December 27, 2015).Google Scholar
  46. (46).
    M. G. Nair, S. K. Mishra, A. R. Putnam, and R. C. Pahdey, J. Antibiot. (Tokyo)., 45, 1738 (1992).CrossRefGoogle Scholar
  47. (47).
    J. S. Park, J. H. Kim, Y. C. Nho, and O. H. Kwon, J. Appl. Polym. Sci., 69, 2213 (1998).CrossRefGoogle Scholar
  48. (48).
    G. W. Snedecor and W. G. Cochran, Statistical Methods, 6th ed., Oxford and IBH Publishing Co., New Delhi, 1967.Google Scholar
  49. (49).
    X. Jiang, L. Chen, and W. Zhong, Polymer, 54, 457 (2003).Google Scholar
  50. (50).
    M. R. Kasaai, J. Arul, and G. Charlet, J. Polym. Sci., Part B: Polym. Phys., 38, 2591 (2000).CrossRefGoogle Scholar
  51. (51).
    W. Wang, S. Bo, S. Li, and W. Qin, Int. J. Biol. Macromol., 13, 281 (1991).CrossRefGoogle Scholar
  52. (52).
    E. Ryuichi, T. Hinokuma, and M. Takeda, J. Polym. Sci., Part A-2 Polym. Phys., 6, 665 (1968).Google Scholar
  53. (53).
    A. H. Krauland and M. J. Alonso, Int. J. Pharm., 340, 134 (2007).CrossRefGoogle Scholar
  54. (54).
    Y. Chen, M. T. Guarnieri, A. I. Vasil, M. L. Vasil, C. T. Mant, and R. S. Hodges, Antimicrob. Agents Chemother., 51, 1398 (2007).CrossRefGoogle Scholar
  55. (55).
    J. J. Bonire, Niger. J. Sci., 19, 145 (1985).Google Scholar
  56. (56).
    P. F. Olurinola, J. O. Ehinmidu, and J. J. Bonire, Appl. Environ. Microbiol., 58, 758 (1992).Google Scholar
  57. (57).
    S. M. Bowman and S. J. Free, BioEssays, 28, 799 (2006).CrossRefGoogle Scholar
  58. (58).
    E. Marie, S. Sagan, S. Cribier, and C. Tribet, J. Membr. Biol., 247, 861 (2014).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Eman A. Ali
    • 3
  • Mohamed Eweis
    • 2
  • Said Elkholy
    • 1
  • Mohamed N. Ismail
    • 3
  • Maher Elsabee
    • 1
  1. 1.Chemistry Department, Faculty of ScienceCairo UniversityGizaEgypt
  2. 2.Botany and Microbiology Department, Faculty of ScienceCairo UniversityGizaEgypt
  3. 3.Polymers and Pigments DepartmentNational Research CenterGizaEgypt

Personalised recommendations