Macromolecular Research

, Volume 26, Issue 2, pp 157–163 | Cite as

Fabrication of Grid-Type Transparent Conducting Electrodes Based on Controlled Mechanical Fracture

  • Jeong Hui Lee
  • Bonghoon Chung
  • SeongHo Park
  • Hong Chul Moon
  • Dong Hyun Lee


Herein, we developed a unique and effective method to fabricate the silver networks embedded in flexible substrates by controlling mechanical fracture in the oxidized surface of elastomers for a highly transparent conducting electrode (TCE). A brittle silica-like layer on a poly(dimethyl siloxane) (PDMS) was generated by carrying out UV/ozone treatment. Then, cracks were uniformly produced in the silica-like layer by bending the elastic substrates at different stains. After the PDMS replica with crack patterns was produced, silver ink was filled into the cracks and sintered to form conducting networks embedded in the PDMS substrate. The resulting highly transparent and conductive electrode was mechanically robust to bending strains. The silver networks-based TCEs was successfully applied to emissive electrochemiluminescent (ECL) devices.


transparent conducting electrodes silver grids mechanical fracture ionic liquid electrochemiluminescence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    J. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, ACS Nano, 4, 43 (2009).CrossRefGoogle Scholar
  2. (2).
    H. Chu, Y. Chang, Y. Lin, S. Chang, W. Chang, G. Li, and H. Tuan, ACS Appl. Mater. Interfaces, 8, 13009 (2016).CrossRefGoogle Scholar
  3. (3).
    H. Choi, J. S. Choi, J. S. Kim, J. H. Choe, K. H. Chung, J. W. Shin, J. T. Kim, D. Youn, K. Kim, J. Lee, S. Choi, P. Kim, C. Choi, and J. Yu, Small, 10, 3685 (2014).CrossRefGoogle Scholar
  4. (4).
    D. J. Lipomi, M. Vosgueritchian, B. C. Tee, S. L. Hellstrom, J. A. Lee, C. H. Fox, and Z. Bao, Nat. Nanotechnol., 6, 788 (2011).CrossRefGoogle Scholar
  5. (5).
    W. J. Yu, S. Y. Lee, S. H. Chae, D. Perello, G. H. Han, M. Yun, and Y. H. Lee, Nano Lett., 11, 1344 (2011).CrossRefGoogle Scholar
  6. (6).
    K. D. M. RAO, C. Hunger, R. Gupta, G. U. Kulkarni, and M. Thelakkat, Phys. Chem. Chem. Phys., 16, 15107 (2014).CrossRefGoogle Scholar
  7. (7).
    S. Lim, B. Kang, D. Kwak, W. H. Lee, J. A. Lim, and K. Cho, J. Phys. Chem. C, 116, 7520 (2012).CrossRefGoogle Scholar
  8. (8).
    H. Wu, D. Kong, Z. Ruan, P. Hsu, S. Wang, Z. Yu, T. J. Carney, L. Hu, S. Fan, and Y. Cui, Nat. Nanotechnol., 8, 421 (2013).CrossRefGoogle Scholar
  9. (9).
    C. F. Guo, T. Sun, Q. Liu, Z. Suo, and Z. Ren, Nat. Commun., 5, 3121 (2014).Google Scholar
  10. (10).
    C. Bao, J. Yang, H. Gao, F. Li, Y. Yao, B. Yang, G. Fu, X. Zhou, T. Yu, Y. Qin, J. Liu, and Z. Zou, ACS Nano, 9, 2502 (2015).CrossRefGoogle Scholar
  11. (11).
    M. Kang, M. Kim, J. Kim, and L. J. Guo, Adv. Mater., 20, 4408 (2008).CrossRefGoogle Scholar
  12. (12).
    K. Seo, Y. Noh, S. Na, and H. Kim, Sol. Energy Mater. Sol. Cells, 155, 51 (2016).CrossRefGoogle Scholar
  13. (13).
    W. Zhou, J. Chen, Y. Li, D. Wang, J. Chen, X. Feng, Z. Huang, R. Liu, X. Lin, H. Zhang, B. Mi, and Y. Ma, ACS Appl. Mater. Interfaces, 8, 11122 (2016).CrossRefGoogle Scholar
  14. (14).
    J. Park and J. Hwang, J. Phys. D: Appl. Phys., 47, 405102 (2014).CrossRefGoogle Scholar
  15. (15).
    J. L. Ni, X. F. Zhu, Z. L. Pei, J. Gong, C. Sun, and G. P. Zhang, J. Phys. D: Appl. Phys., 42, 175404 (2009).CrossRefGoogle Scholar
  16. (16).
    C. H. Hsueh and A. A. Wereszczak, J. Appl. Phys., 96, 3501 (2004).CrossRefGoogle Scholar
  17. (17).
    S. L. Bazhenov, A. L. Volynskii, V. M. Alexandrov, and N. F. Bakeev, J. Polym. Sci., Part B: Polym. Phys., 40, 10 (2002).CrossRefGoogle Scholar
  18. (18).
    T. Ye, Z. Suo, and A. G. Evans, Int. J. Solids Struct., 29, 2639 (1992).CrossRefGoogle Scholar
  19. (19).
    K. L. Mills, D. Huh, S. Takayama, and M. D. Thouless, Lab Chip, 10, 1627 (2010).CrossRefGoogle Scholar
  20. (20).
    X. Zhu, K. L. Mills, P. R. Peters, J. H. Bahng, E. H. Liu, J. Shim, K. Naruse, M. E. Csete, M. D. Thouless, and S. Takayama, Nat. Mater., 4, 403 (2005).CrossRefGoogle Scholar
  21. (21).
    C. H. Hsueh and M. Yanaka, J. Mater. Sci., 38, 1809 (2003).CrossRefGoogle Scholar
  22. (22).
    H. Kim, S. Lee, and K. Suh, Lab Chip, 11, 717 (2011).CrossRefGoogle Scholar
  23. (23).
    C. H. Hsueh and A. G. Evans, J. Am. Ceram. Soc., 68, 241 (1985).CrossRefGoogle Scholar
  24. (24).
    R. Nahta and B. Moran, Eng. Fract. Mech., 52, 513 (1995).CrossRefGoogle Scholar
  25. (25).
    N. Bowden, W. T. Huck, K. E. Paul, and G. M. Whitesides, Appl. Phys. Lett., 75, 2557 (1999).CrossRefGoogle Scholar
  26. (26).
    J. Park, H. Y. Chae, C. Chung, S. J. Sim, J. Park, H. H. Lee, and P. J. Yoo, Soft Matter, 6, 677 (2010).CrossRefGoogle Scholar
  27. (27).
    Y. Xuan, X. Guo, Y. Cui, C. Yuan, H. Ge, B. Cui, and Y. Chen, Soft Matter, 8, 9603 (2012).CrossRefGoogle Scholar
  28. (28).
    P. Kim, M. Abkarian, and H. A. Stone, Nat. Mater., 10, 952 (2011).CrossRefGoogle Scholar
  29. (29).
    M. Watanabe and K. Mizukami, Macromolecules, 45, 7128 (2012).CrossRefGoogle Scholar
  30. (30).
    F. A. Bayley, J. L. Liao, P. N. Stavrinou, A. Chiche, and J. T. Cabral, Soft Matter, 10, 1155 (2014).CrossRefGoogle Scholar
  31. (31).
    S. Yu, X. Zhang, X. Xiao, H. Zhou, and M. Chen, Soft Matter, 11, 2203 (2015).CrossRefGoogle Scholar
  32. (32).
    S. Béfahy, P. Lipnik, T. Pardoen, C. Nascimento, B. Patris, P. Bertrand, and S. Yunus, Langmuir, 26, 3372 (2009).CrossRefGoogle Scholar
  33. (33).
    N. J. Douville, Z. Li, S. Takayama, and M. D. Thouless, Soft Matter, 7, 6493 (2011).CrossRefGoogle Scholar
  34. (34).
    S. Park, H. C. Moon, and D. H. Lee, RSC Adv., 6, 50158 (2016).CrossRefGoogle Scholar
  35. (35).
    H. C. Moon, T. P. Lodge, and C. D. Frisbie, J. Am. Chem. Soc., 136, 3705 (2014).CrossRefGoogle Scholar
  36. (36).
    H. C. Moon, T. P. Lodge, and C. D. Frisbie, J. Mater. Chem. C, 4, 8448 (2016).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Polymer Science and EngineeringDankook UniversityGyeonggiKorea
  2. 2.POSCO Global R&D CenterIncheonKorea
  3. 3.Department of Chemical EngineeringUniversity of SeoulSeoulKorea

Personalised recommendations