Homogeneous polyimide/silica nanohybrid films adapting simple polymer blending process: Polymeric silsesquiazane precursor to inorganic silica

  • Tae-Hwan Huh
  • So Yoon Lee
  • Seung Koo Park
  • Jin-Hae Chang
  • Yunsang Lee
  • Young-Je Kwark
Article
  • 32 Downloads

Abstract

Homogeneous polyimide (PI)/silica nanohybrid films were prepared using acetoxy group functionalized PI and silsesquiazane (SSQZ) as a silica precursor. During the heat treatment at 250 °C in a nitrogen atmosphere, the SSQZ was converted to silica. At the same time, the acetoxy groups of PI were converted into hydroxyl groups and formed covalent bonds with silica to make the resulting hybrid film homogeneous. FE-SEM and AFM analysis showed no evidence of macro-phase separation. As a result, the hybrid films exhibited improved thermal and mechanical properties, including 5% weight loss temperature, residual amount at 1,000 °C, coefficient of thermal expansion, and pencil hardness. The optical properties of the films also improved with showing a similar optical transmittance and lower yellow index.

Keywords

polyimide silsesquiazane preceramic polymers nanohybrid. 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

13233_2018_6024_MOESM1_ESM.pdf (746 kb)
Supplementary material, approximately 228 KB.

References

  1. (1).
    C. E. Sroog, Prog. Polym. Sci., 16, 561 (1991).CrossRefGoogle Scholar
  2. (2).
    C.-P. Yang and W.-T. Chen, Macromolecules, 26, 4865 (1993).CrossRefGoogle Scholar
  3. (3).
    W. Volksen, R. D. Miller, and G. Dubois, Chem. Rev., 110, 56 (2010).CrossRefGoogle Scholar
  4. (4).
    Y.-H. Zhang, Z.-M. Dang, J. H. Xin, W. A. Daoud, J.-H. Ji, Y. Liu, B. Fei, Y. Li, J. Wu, S. Yang, and L.-F. Li, Macromol. Rapid Commun., 26, 1473 (2005).CrossRefGoogle Scholar
  5. (5).
    J. Y. Do, S. K. Park, J. J. Ju, S. Park, and M.-H. Lee, Macromol. Chem. Phys., 204, 410 (2003).CrossRefGoogle Scholar
  6. (6).
    X. Peng, W. Xu, L. Chen, Y. Ding, S. Chen, X. Wang, and H. Hou, J. Mater. Chem. C, 4, 6452 (2016).CrossRefGoogle Scholar
  7. (7).
    B. S. Ghanem, R. Swaidan, E. Litwiller, and I. Pinnau, Adv. Mater., 26, 3688 (2014).CrossRefGoogle Scholar
  8. (8).
    R. A. Dine-Hart and W. W. Wright, Makromol. Chem, 143, 189 (1971).CrossRefGoogle Scholar
  9. (9).
    J. P. LaFemina, G. Arjavalingam, and G. Hougham, J. Chem. Phys., 90, 5154 (1989).CrossRefGoogle Scholar
  10. (10).
    G. Arjavalingam, G. Hougham, and J. P. LaFemina, Polymer, 31, 840 (1990).CrossRefGoogle Scholar
  11. (11).
    F. W. Harris, in Polyimides, D. Wilson, H. D. Stenzenberger, and P. M. Hergenrother, Eds., Blackie, Glasgow, 1990, pp 1–35.Google Scholar
  12. (12).
    D.-J. Liaw, K.-L. Wang, Y.-C. Huang, K.-R. Lee, J.-Y. Lai, and C.-S. Ha, Prog. Polym. Sci., 37, 907 (2012).CrossRefGoogle Scholar
  13. (13).
    M. Ghaemy, R. Alizadeh, and H. Behmadi, Eur. Polym. J., 45, 3108 (2009).CrossRefGoogle Scholar
  14. (14).
    H.-C. Yu, V. Kumar, J. H. Lee, Y. Oh, and C.-M. Chung, Macromol. Res., 23, 566 (2015).CrossRefGoogle Scholar
  15. (15).
    K. Faghihi, A. Raeisi, and H. A. Geravi, Fibers Polym., 18, 1 (2017).CrossRefGoogle Scholar
  16. (16).
    D.-J. Liaw, P.-N. Hsu, W.-H. Chen, and B.-Y. Liaw, Macromol. Chem. Phys., 202, 1483 (2001).CrossRefGoogle Scholar
  17. (17).
    I. H. Choi and J.-H. Chang, Polym. Adv. Technol., 22, 682 (2011).CrossRefGoogle Scholar
  18. (18).
    C. J. Cornelius and E. Marand, J. Membr. Sci., 202, 97 (2002).CrossRefGoogle Scholar
  19. (19).
    S. Kim, W. Wang, S. Ando, and X. Wang, RSC Adv., 4, 27267 (2014).CrossRefGoogle Scholar
  20. (20).
    K.-H. Nam, S. Kim, J. Song, S. Baek, S.-H. Paek, B.-C. Ku, and H. Han, Macromol. Res., 24, 104 (2016).CrossRefGoogle Scholar
  21. (21).
    H. Ikbal, Q. Wang, A. Azzam, and W. Li, Fibers Polym., 17, 117 (2016).CrossRefGoogle Scholar
  22. (22).
    A. Morikawa, Y. Iyoku, and M. Kakimoto, Polym. J., 24, 107 (1992).CrossRefGoogle Scholar
  23. (23).
    A. Morikawa, H. Yamaguchi, M. Kakimoto, and Y. Imai, Chem. Mater., 6, 913 (1994).CrossRefGoogle Scholar
  24. (24).
    K. H. Wu, T. C. Chang, Y. T. Wang, and Y. S. Chiu, J. Polym. Sci., Part A: Polym. Chem., 37, 2275 (1999).CrossRefGoogle Scholar
  25. (25).
    M. Nandi, J. A. Conklin, L. Salvati, and A. Sen, Chem. Mater., 3, 201 (1991).CrossRefGoogle Scholar
  26. (26).
    R. Ciriminna, A. Fidalgo, V. Pandarus, F. Béland, L. M. Ilharco, and M. Pagliaro, Chem. Rev., 113, 6592 (2013).CrossRefGoogle Scholar
  27. (27).
    F. Atabaki and H. Ahmadizadegan, Polym-Plast. Technol. Eng., 54, 523 (2015).CrossRefGoogle Scholar
  28. (28).
    L. Mascia and A. Kioul, Polymer, 36, 3649 (1995).CrossRefGoogle Scholar
  29. (29).
    L. Mascia and A. Kioul, J. Mater. Sci. Lett., 13, 641 (1994).CrossRefGoogle Scholar
  30. (30).
    A. Kioul and L. Mascia, J. Non-Cryst. Solids, 175, 169 (1994).CrossRefGoogle Scholar
  31. (31).
    X.-Y. Shang, Z.-K. Zhu, J. Yin, and X.-D. Ma, Chem. Mater., 14, 71 (2002).CrossRefGoogle Scholar
  32. (32).
    Z. Yang, Q. Wang, Y. Bai, and T. Wang, RSC Adv., 5, 72971 (2015).CrossRefGoogle Scholar
  33. (33).
    L. L. Hench and J. K. West, Chem. Rev., 90, 33 (1990).CrossRefGoogle Scholar
  34. (34).
    W. H. Lee, S. G. Lee, Y.-J. Kwark, D. R. Lee, S. Lee, and J. H. Cho, ACS Appl. Mater. Interfaces, 6, 22807 (2014).CrossRefGoogle Scholar
  35. (35).
    H. S. Lee, K. Park, J. D. Kim, T. Han, K. H. Ryu, H. S. Lim, D. R. Lee, Y.-J. Kwark, and J. H. Cho, J. Mater. Chem., 21, 6968 (2011).CrossRefGoogle Scholar
  36. (36).
    K. H. Yoo, I. W. Kim, J. H. Cho, and Y.-J. Kwark, Fibers Polym., 13, 1113 (2012).CrossRefGoogle Scholar
  37. (37).
    M. H. Kailani and C. S. P. Sung, Macromolecules, 31, 5771 (1998).CrossRefGoogle Scholar
  38. (38).
    B. Comesaña-Gándara, J. G. de la Campa, A. Hernández, H. J. Jo, Y. M. Lee, J. d. Abajo, and A. E. Lozano, RSC Adv., 5, 102261 (2015).CrossRefGoogle Scholar
  39. (39).
    Z. P. Smith, D. F. Sanders, C. P. Ribeiro, R. Guo, B. D. Freeman, D. R. Paul, J. E. McGrath, and S. Swinnea, J. Membr. Sci., 415-416, 558 (2012).CrossRefGoogle Scholar
  40. (40).
    S. K. Park and R. J. Farris, Polym. Bull., 45, 405 (2000).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Tae-Hwan Huh
    • 1
  • So Yoon Lee
    • 2
  • Seung Koo Park
    • 3
  • Jin-Hae Chang
    • 4
  • Yunsang Lee
    • 5
  • Young-Je Kwark
    • 1
    • 2
  1. 1.Department of Organic Materials and Fiber EngineeringSoongsil UniversityDongjak-Gu, SeoulKorea
  2. 2.Department of Information Communication, Materials EngineeringChemistry Convergence Technology, Soongsil UniversityDongjak-Gu, SeoulKorea
  3. 3.Electronics and Telecommunications Research InstituteYuseong-gu, DaejoenKorea
  4. 4.Department of Polymer Science and EngineeringKumoh National Institute of TechnologyGyeongbukKorea
  5. 5.Department of PhysicsSoongsil UniversityDongjak-Gu, SeoulKorea

Personalised recommendations