Skip to main content
Log in

Michael Addition of Thiol Compounds on ω-Maleate Poly(ethylene oxide)s: Model Study for the “Site-Specific” Modification of Proteins

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

In this study, we successfully synthesized ω-maleate poly(ethylene oxide)s (PEOs) as the modifier for proteins through the thiol-ene Michael addition reaction. Both α-azido-ω-maleate PEO and α-t-butoxy-ω-maleate PEO were obtained from the reaction of ‘living’ polymeric alkoxides with maleic anhydride (over 98 mol%). To examine their availability as one of basic matrices for the thiol-ene Michael addition, model compounds as the precursors of protein carrying the thiol group such as thioacetic acid, cysteamine, and cysteine were employed. Their addition on the maleate group was over 98 mol% under sonication or ultraviolet (UV) irradiation. The acidic condition appeared to affect to yield a diastereomeric mixture. All the PEOs carrying the ω-maleate group appeared to be applied for the efficient modifiers in the “site-specific” PEGylation of peptides or proteins. All the functionalized PEOs including ω-succinate PEO were characterized by a combination of size exclusion chromatographic (SEC), 1H nuclear magnetic resonance (NMR), and Fourier transform-infrared (FT-IR) spectroscopic analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Advances in Lithium-Ion Batteries, B. Scrosati and W. Schalkwijk, Eds., Plenum, New York, 2002.

  2. J.-M. Tarascon and M. Armand, Nature, 414, 359 (2001).

    Article  CAS  Google Scholar 

  3. F. Croce, R. Curini, A. Martinelli, L. Persi, F. Ronci, B. Scrosati, and R. Caminiti, J. Phys. Chem. B, 103, 10632 (1999).

    Article  CAS  Google Scholar 

  4. D. Swierczynski, A. Zalewska, and W. Wieczorek, Chem. Mater., 13, 1560 (2001).

    Article  CAS  Google Scholar 

  5. H.-M. Xiong, D.-P. Liu, H. Zhang, and J.-S. Chen, J. Mater. Chem., 14, 2775 (2004).

    Article  CAS  Google Scholar 

  6. J. M. Harris and R. B. Chess, Nat. Rev. Drug Discov., 2, 214 (2003).

    Article  CAS  Google Scholar 

  7. R. Duncan, Nat. Rev. Drug Discov., 2, 347 (2003).

    Article  CAS  Google Scholar 

  8. M. Sharpe, S. E. Easthope, G. M. Keating, and H. M. Lamb, Drugs, 62, 2089 (2002).

    Article  CAS  Google Scholar 

  9. M. S. Thompson, T. P. Vadala, M. L. Vadala, Y. Lin, and J. S. Riffle, Polymer, 49, 345 (2008).

    Article  CAS  Google Scholar 

  10. A.-L. Brocas, C. Mantzaridis, D. Tunc, and S. Carlotti, Prog. Polym. Sci., 38, 845 (2013).

    Article  CAS  Google Scholar 

  11. S. Penczek, M. Cypryk, A. Duda, P. Kubisa, and S. Slomkowski, Prog. Polym. Sci., 32, 247 (2007).

    Article  CAS  Google Scholar 

  12. J. Herzberger, K. Niederer, H. Pohlit, J. Seiwert, M. Worm, F. R. Wurm, and H. Frey, Chem. Rev., 116, 2170 (2016).

    Article  CAS  Google Scholar 

  13. R. Mahou and C. Wandrey, Polymers, 4, 561 (2012).

    Article  Google Scholar 

  14. S. Yang, Y. Kim, H. C. Kim, A. B. Siddique, G. Youn, H. J. Kim, H. Park, J. Y. Lee, S. Kim, and J. Kim, Polym. Chem., 7, 394 (2016).

    Article  CAS  Google Scholar 

  15. S. Salmaso, A. Semenzato, S. Bersani, F. Mastrotto, A. Scomparin, and P. Caliceti, Eur. Polym. J., 44, 1378 (2008).

    Article  CAS  Google Scholar 

  16. M. R. Weissman, K. T. Winger, S. Ghiassian, P. Gobbo, and M. S. Workentin, Bioconjug. Chem., 27, 586 (2016).

    Article  CAS  Google Scholar 

  17. P. Gobbo and M. S. Workentin, Langmuir, 28, 12357 (2012).

    Article  CAS  Google Scholar 

  18. F. J. Martin and D. Papahadjopoulos, J. Biol. Chem., 257, 286 (1982).

    CAS  Google Scholar 

  19. Y. Yagci and M. A. Tasdelen, Prog. Polym. Sci., 31, 1133 (2006).

    Article  CAS  Google Scholar 

  20. K. Nilsson, L. Mellin, F. Nederberg, and T. Bowden, Macromolecules, 40, 901 (2007).

    Article  CAS  Google Scholar 

  21. C.-Y. Hong, Y.-Z. You, and C.-Y. Pan, J. Polym. Sci., Part A: Polym. Chem., 42, 4873 (2004).

    Article  CAS  Google Scholar 

  22. M. Desroches, S. Caillol, V. Laptinte, R. Auvergne, and B. Boutevin, Macromolecules, 44, 2489 (2011).

    Article  CAS  Google Scholar 

  23. D. Alfonso, T. Le Gall, H. Couthon-Gourves, A. Grelard, S. Prakash, M. Berchel, N. Kervarec, E. J. Dufourc, T. Montier, and P.-A. Jaffres, Soft Matter, 12, 4516 (2016).

    Article  Google Scholar 

  24. A. B. Lowe, Polym. Chem., 5, 4820 (2014).

    Article  CAS  Google Scholar 

  25. S. W. Kim, A. B. Siddique, J. W. An, H. Park, H. J. Kim, H.-J. Kang, J. Y. Lee, S. Kim, and J. Kim, Macromol. Res., 24, 188 (2016).

    Article  CAS  Google Scholar 

  26. L. Andersson, J. Davies, R. Duncan, P. Ferruti, J. Ford, S. Kneller, R. Mendichi, G. Pasut, O. Schiavon, C. Summerford, A. Tirk, F. M. Veronese, V. Vincenzi, and G. Wu, Biomacromolecules, 6, 914 (2005).

    Article  CAS  Google Scholar 

  27. D. Esquivel, O. van den Berg, F. J. Romero-Salguero, F. D. Prez, and P. Van Der Voort, Chem. Commun., 49, 2344 (2013).

    Article  CAS  Google Scholar 

  28. Q. Dai, C. Walkey, and W. C. W. Chan, Angew. Chem. Int. Ed., 53, 5093 (2014).

    Article  CAS  Google Scholar 

  29. A. D. Baldwin and K. L. Kiick, Polym. Chem., 4, 133 (2014).

    Article  Google Scholar 

  30. D. P. Nair, M. Podgorski, S. Chatani, T. Gong, W. Xi, C. R. Fenoli, and C. N. Bowman, Chem. Mater., 26, 724 (2014).

    Article  CAS  Google Scholar 

  31. F. M. Veronese, Biomaterials, 22, 405 (2001).

    Article  CAS  Google Scholar 

  32. S. Oae, T. Yagihara, and T. Okabe, Tetrahedron, 28, 3203 (1072).

    Article  Google Scholar 

  33. J. Vandanapu and S. Rachuru, Adv. Phys. Chem., 2012, ID 598243 (2012).

    Google Scholar 

  34. http://www.agilent.com/cs/library/applications/5991-2519EN_GPCpharma.pdf

  35. W. Siebourg, R. D. Lundberg, and R. W. Lenz, Macromolecules, 13, 1013 (1980).

    Article  CAS  Google Scholar 

  36. R. P. Quirk and J. Kim, Macromolecules, 24, 4515 (1991).

    Article  CAS  Google Scholar 

  37. C. E. Hoyle and C. N. Bowman, Angew. Chem. Int. Ed., 49, 1540 (2010).

    Article  CAS  Google Scholar 

  38. M. Sallman, B. Braun, and C. Limberg, Chem. Commun., 51, 6785 (2015).

    Article  Google Scholar 

  39. S. N. Semenov, L. J. Kraft, A. Ainla, M. Zhao, M. Baghbanzadeh, V. E. Campbell, K. Kang, J. M. Fox, and G. M. Whitesides, Nature, 537, 656 (2016).

    Article  CAS  Google Scholar 

  40. J. Y. Lee, B. J. Byun, and Y. K. Kang, J. Phys. Chem. B, 112, 11189 (2008).

    Article  CAS  Google Scholar 

  41. S. G. Tajc, B. S. Tolbert, R. Basavappa, and B. L. Miller, J. Am. Chem. Soc., 126, 10508 (2004).

    Article  CAS  Google Scholar 

  42. http://chemistry.tutorvista.com/biochemistry/cysteine.html

  43. https://www2.chemistry.msu.edu/faculty/reusch/virttxtjml/proteins.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jeewoo Lim or Jungahn Kim.

Additional information

Acknowledgments: This work was funded by the Program (20160681) of Dongnam Chemical Co.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoon, H.B., Lee, Y., Seo, D. et al. Michael Addition of Thiol Compounds on ω-Maleate Poly(ethylene oxide)s: Model Study for the “Site-Specific” Modification of Proteins. Macromol. Res. 26, 194–203 (2018). https://doi.org/10.1007/s13233-018-6021-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-018-6021-4

Keywords

Navigation