Macromolecular Research

, Volume 25, Issue 3, pp 201–205 | Cite as

Block copolymer-based nanocomposites with exotic self-assembled structures induced by a magnetic field

Article
  • 128 Downloads

Abstract

Structural control of polymer nanocomposites is important for their applications in organic semiconductors, lithographic nanopatterning, separation membranes, and nanofabrication templates. However, manufacturing nanocomposite materials with novel structures in a highly efficient yet precise manner remains a great challenge. To create nanocomposite structures, we combined self-assembly processing of block copolymer (BCP)-metal complex nanocomposites with an applied magnetic field. Here, we describe in detail the mechanism of magnetic alignment of block copolymers doped with metal complexes; specifically, we investigated the effect of the applied magnetic field on the phase behavior of the assembled block copolymer-metal complex nanocomposites with various molecular weights and with different molecular structures. We show that our combination of self-assembly processing and application of a magnetic field yielded lamellar structures of alternating multilayers with different layer thicknesses. This self-assembled structure is not included in phase diagrams of BCPs. The influence of the block copolymers’ molecular structures on the nanocomposites’ phase transformation behavior is also discussed. Our results provide a route to manufacturing nanocomposite materials in a highly efficient yet precise manner, which could lead to improvement in the material properties of nanocomposites.

Keywords

magnetic alignment block copolymer metal complex self-assembly nanocomposite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (1).
    N. Krasteva, I. Bes-nard, B. Guse, R. E. Bauer, K. Mullen, A. Yasuda, and T. Vossmeyer, Nano Lett., 2, 551 (2002).CrossRefGoogle Scholar
  2. (2).
    T. Trindade, P. O’Brien, and N. L. Pickett, Chem. Mater., 13, 3843 (2001).CrossRefGoogle Scholar
  3. (3).
    T. H. Galow, U. Drechsler, J. A. Hanson, and V. M. Rotello, Chem. Commun., 10, 1076 (2002).CrossRefGoogle Scholar
  4. (4).
    N. I. Cuello, V. R. Elias, C. E. R. Torres, M. E. Crivello, M. I. Oliva, and G. A. Eimer, Micropor. Mesopor. Mater., 203, 106 (2015).CrossRefGoogle Scholar
  5. (5).
    B. Ranjbar, and H. Nazockdast, J. Appl. Polym. Sci., 132, 41753 (2015).CrossRefGoogle Scholar
  6. (6).
    A. Salehi-Khojin, M. R. Hosseini, and N. Jalili, Compos. Sci. Technol., 69, 545 (2009).CrossRefGoogle Scholar
  7. (7).
    S. Rivoirard, J. Min. Met. Mater. Soc., 65, 7901 (2013).CrossRefGoogle Scholar
  8. (8).
    K. Wang, Q. Zhang, and Q. Fu, Acta Polym. Sin., 5, 586 (2013).Google Scholar
  9. (9).
    T. Fujihara, H. B. Cho, M. Kanno, T. Nakayama, T. Suzuki, W. Jiang, H. Suematsu, and K. Niihara, Jpn. J. Appl. Phys., 53, 02BD12 (2014).CrossRefGoogle Scholar
  10. (10).
    W. Park, K. Emoto, Y. H. Jin, A. Shimizu, V. A. Tamma, and W. Zhang, Opt. Mater. Exp., 3, 205 (2013).CrossRefGoogle Scholar
  11. (11).
    K. L. Xu, R. H. Guo, B. J. Dong, and L. T. Yan, Soft Matter, 8, 9581 (2012).CrossRefGoogle Scholar
  12. (12).
    Y. J. Jang and D. H. Kim, Chem-Euro J., 17, 540 (2011).CrossRefGoogle Scholar
  13. (13).
    Y. Xia, W. K. Zhang, H. Huang, Y. P. Gan, J. Tian, and X. Y. Tao, J. Power Sources, 196, 5651 (2011).CrossRefGoogle Scholar
  14. (14).
    B. L. Sanchez-Gaytan, S. Li, A. C. Kamps, R. J. Hickey, N. Clarke, M. Fryd, B. B. Wayland, and S. J. Park, J. Phys. Chem. C, 115, 7836 (2011).CrossRefGoogle Scholar
  15. (15).
    H. Wakayama H. Yonekura, and Y. Kawai, ACS Macro Lett., 2, 284 (2013).CrossRefGoogle Scholar
  16. (16).
    H. Wakayama and H. Yonekura, Mater. Lett., 171, 268 (2016).CrossRefGoogle Scholar
  17. (17).
    C. Sadron and B. Allot, Makromol. Chem., 164, 301 (1973).CrossRefGoogle Scholar
  18. (18).
    K. Ishizu, K. Bessho, T. Fukutomi, and T. Kakurai, Makromol. Chem. Rapid Commun., 4, 163 (1983).CrossRefGoogle Scholar
  19. (19).
    Q. Maqbool, A. Reddy M, S. Goswami, S. Konar, and A. Srivastava, J. Mater. Chem. A, 2, 2609 (2014).CrossRefGoogle Scholar
  20. (20).
    A. Elmaci, J. Hacaloglu, C. Kayran, G. Sakellariou, and N. Hadjichristidis, Polym. Degrad. Stab., 94 2023 (2009).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Toyota Central R&D LaboratoriesAichiJapan

Personalised recommendations