Skip to main content
Log in

Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol (PEG) microwell array

  • Article
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Embryoid bodies have a number of similarities with cells in gastrulation, which provides useful biological information about embryonic stem cell differentiation. Extensive research has been done to study the control of embryoid body-mediated embryonic stem cell differentiation in various research fields. Recently, microengineering technology has been used to control the size of embryoid bodies and to direct lineage specific differentiation of embryonic stem cells. However, the underlying biology of developmental events in the embryoid bodies of different sizes has not been well elucidated. In this study, embryoid bodies with different sizes were generated within microfabricated PEG microwell arrays, and a series of gene and molecular expressions related to early developmental events was investigated to further elucidate the size-mediated differentiation. The gene and molecular expression profile suggested preferential visceral endoderm formation in 450 μm embryoid bodies and preferential lateral plate mesoderm formation in 150 μm embryoid bodies. These aggregates resulted in higher cardiac differentiation in 450 μm embryoid bodies and higher endothelial differentiation in 150 μm embryoid bodies, respectively. Our findings may provide further insight for understanding embryoid body size-mediated developmental progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Bader, A. Gruss, A. Hollrigl, H. Al-Dubai, Y. Capetanaki, and G. Weitzer, Differentiation, 68, 31 (2001).

    Article  CAS  Google Scholar 

  2. A. Grover, G. Andrews, and E. D. Adamson, J. Cell Biol., 97, 137 (1983).

    Article  CAS  Google Scholar 

  3. A. H. Hart, L. Hartley, K. Sourris, E. S. Stadler, R. Li, E. G. Stanley, P. P. Tam, A. G. Elefanty, and L. Robb, Development, 129, 3597 (2002).

    CAS  Google Scholar 

  4. A. Nose and M. Takeichi, J. Cell Biol., 103, 2649 (1986).

    Article  CAS  Google Scholar 

  5. C. L. Bauwens, R. Peerani, S. Niebruegge, K. A. Woodhouse, E. Kumacheva, M. Husain, and P. W. Zandstra, Stem Cells, 26, 2300 (2008).

    Article  Google Scholar 

  6. C. Z. Chun, I. Remadevi, M. O. Schupp, G. V. Samant, K. Pramanik, G. A. Wilkinson, and R. Ramchandran, PLoS One, 6, e14732 (2011).

    Article  CAS  Google Scholar 

  7. D. G. Wilkinson, S. Bhatt, and B. G. Herrmann, Nature, 343, 657 (1990).

    Article  CAS  Google Scholar 

  8. H. Acloque, M. S. Adams, K. Fishwick, M. Bronner-Fraser, and M. A. Nieto, J. Clin. Invest., 119, 1438 (2009).

    Article  CAS  Google Scholar 

  9. H. C. Moeller, M. K. Mian, S. Shrivastava, B. G. Chung, and A. Khademhosseini, Biomaterials, 29, 752 (2008).

    Article  CAS  Google Scholar 

  10. H. El-Hodiri, N. Bhatia-Dey, K. Kenyon, K. Ault, M. Dirksen, and M. Jamrich, Int. J. Dev. Biol., 45, 265 (2001).

    CAS  Google Scholar 

  11. I. Burtscher and H. Lickert, Development, 136, 1029 (2009).

    Article  CAS  Google Scholar 

  12. J. A. Rivera-Perez and T. Magnuson, Dev. Biol., 288, 363 (2005).

    Article  CAS  Google Scholar 

  13. J. Itskovitz-Eldor, M. Schuldiner, D. Karsenti, A. Eden, O. Yanuka, M. Amit, H. Soreq, and N. Benvenisty, Mol. Med., 6, 88 (2000).

    CAS  Google Scholar 

  14. M. B. Rogers, S. C. Watkins, and L. J. Gudas, J. Cell Biol., 110, 1767 (1990).

    Article  CAS  Google Scholar 

  15. N. Christoforou, R. A. Miller, C. M. Hill, C. C. Jie, A. S. McCallion, and J. D. Gearhart, J. Clin. Invest., 118, 894 (2008).

    CAS  Google Scholar 

  16. P. B. Antin, T. Yatskievych, J. L. Dominguez, and P. Chieffi, J. Cell. Physiol., 168, 42 (1996).

    Article  CAS  Google Scholar 

  17. S. Becker, Z. J. Wang, H. Massey, A. Arauz, P. Labosky, M. Hammerschmidt, B. St-Jacques, D. Bumcrot, A. McMahon, and L. Grabel, Dev. Biol., 187, 298 (1997).

    Article  CAS  Google Scholar 

  18. S. L. Lewis, P. L. Khoo, R. A. De Young, K. Steiner, C. Wilcock, M. Mukhopadhyay, H. Westphal, R. V. Jamieson, L. Robb, and P. P. Tam, Development, 135, 1791 (2008).

    Article  CAS  Google Scholar 

  19. S. M. Dang, S. Gerecht-Nir, J. Chen, J. Itskovitz-Eldor, and P. W. Zandstra, Stem Cells, 22, 275 (2004).

    Article  Google Scholar 

  20. S. Tada, T. Era, C. Furusawa, H. Sakurai, S. Nishikawa, M. Kinoshita, K. Nakao, and T. Chiba, Development, 132, 4363 (2005).

    Article  CAS  Google Scholar 

  21. T. Dvash, Y. Mayshar, H. Darr, M. McElhaney, D. Barker, O. Yanuka, K. J. Kotkow, L. L. Rubin, N. Benvenisty, and R. Eiges, Hum. Reprod., 19, 2875 (2004).

    Article  CAS  Google Scholar 

  22. T. Hamazaki, M. Oka, S. Yamanaka, and N. Terada, J. Cell Sci., 117, 5681 (2004).

    Article  CAS  Google Scholar 

  23. T. M. Schultheiss, S. Xydas, and A. B. Lassar, Development, 121, 4203 (1995).

    CAS  Google Scholar 

  24. V. Kouskoff, G. Lacaud, S. Schwantz, H. J. Fehling, and G. Keller, Proc. Natl. Acad. Sci. U.S.A., 102, 13170 (2005).

    Article  CAS  Google Scholar 

  25. Y. Liu, M. Asakura, H. Inoue, T. Nakamura, M. Sano, Z. Niu, M. Chen, R. J. Schwartz, and M. D. Schneider, Proc. Natl. Acad. Sci. U.S.A., 104, 3859 (2007).

    Article  CAS  Google Scholar 

  26. Y. Mishina, A. Suzuki, N. Ueno, and R. R. Behringer, Genes Dev., 9, 3027 (1995).

    Article  CAS  Google Scholar 

  27. Y. S. Hwang, B. G. Chung, D. Ortmann, N. Hattori, H. C. Moeller, and A. Khademhosseini, Proc. Natl. Acad. Sci. U.S.A., 106, 16978 (2009).

    Article  CAS  Google Scholar 

  28. Y. Y. Choi, B. G. Chung, D. H. Lee, A. Khademhosseini, J. H. Kim, and S. H. Lee, Biomaterials, 31, 4296 (2010).

    Article  CAS  Google Scholar 

  29. T. A. Pelton, S. Sharma, T. C. Schulz, J. Rathjen, and P. D. Rathjen, J. Cell Sci., 115, 329 (2002).

    CAS  Google Scholar 

  30. G. Yamada, A. Mansouri, M. Torres, E. T. Stuart, M. Blum, M. Schultz, E. M. De Robertis, and P. Gruss, Development, 121, 2917 (1995).

    CAS  Google Scholar 

  31. S. J. Arnold and E. J. Robertson, Nat. Rev. Mol. Cell Biol., 10, 91 (2009).

    Article  CAS  Google Scholar 

  32. A. S. Bernardo, T. Faial, L. Gardner, K. K. Niakan, D. Ortmann, C. E. Senner, E. M. Callery, M. W. Trotter, M. Hemberger, J. C. Smith, L. Bardwell, A. Moffett, and R. A. Pedersen, Cell Stem Cell, 9, 144 (2011).

    Article  CAS  Google Scholar 

  33. D. Berge, W. Koole, C. Fuerer, M. Fish, E. Eroglu, and R. Nusse, Cell Stem Cell, 3, 508 (2008).

    Article  Google Scholar 

  34. T. P. Yamaguchi, Curr. Biol., 11, R713 (2001).

    Article  CAS  Google Scholar 

  35. M. Kanai-Azuma, Y. Kanai, J. M. Gad, Y. Tajima, C. Taya, M. Kurohmaru, Y. Sanai, H. Yonekawa, K. Yazaki, P. P. Tam, and Y. Hayashi, Development, 129, 2367 (2002).

    CAS  Google Scholar 

  36. I. Burtscher and H. Lickert, Development, 136, 1029 (2009).

    Article  CAS  Google Scholar 

  37. S. J. Kinder, T. E. Tsang, G. A. Quinlan, A. K. Hadjantonakis, A. Nagy, and P. P. Tam, Development, 126, 4691 (1999).

    CAS  Google Scholar 

  38. M. Mahlapuu, M. Ormestad, S. Enerback, and P. Carlsson, Development, 128, 155 (2001).

    CAS  Google Scholar 

  39. L. Grabel, S. Becker, L. Lock, P. Maye, and T. Zanders, Int. J. Dev. Biol., 42, 917 (1998).

    CAS  Google Scholar 

  40. R. E. Hammer, R. Krumlauf, S. A. Camper, R. L. Brinster, and S. M. Tilghman, Science, 235, 53 (1987).

    Article  CAS  Google Scholar 

  41. M. C. Nostro, X. Cheng, G. M. Keller, and P. Gadue, Cell Stem Cell, 2, 60 (2008).

    Article  CAS  Google Scholar 

  42. B. Drogat, J. Kalucka, L. Gutierrez, H. Hammad, S. Goossens, M. Farhang Ghahremani, S. Bartunkova, K. Haigh, K. Deswarte, O. Nyabi, M. Naessens, N. Ferrara, U. Klingmuller, B. N. Lambrecht, A. Nagy, S. Philipsen, and J. J. Haigh, Blood, 116, 2141 (2010).

    Article  CAS  Google Scholar 

  43. G. Keller, M. Kennedy, T. Papayannopoulou, and M. V. Wiles, Mol. Cell. Biol., 13, 473 (1993).

    CAS  Google Scholar 

  44. T. N. Masckauchan, D. Agalliu, M. Vorontchikhina, A. Ahn, N. L. Parmalee, C. M. Li, A. Khoo, B. Tycko, A. M. Brown, and J. Kitajewski, Mol. Biol. Cell, 17, 5163 (2006).

    Article  CAS  Google Scholar 

  45. H. S. Baldwin, H. M. Shen, H. C. Yan, H. M. DeLisser, A. Chung, C. Mickanin, T. Trask, N. E. Kirschbaum, P. J. Newman, S. M. Albelda, and C. A. Buck, Development, 120, 2539 (1994).

    CAS  Google Scholar 

  46. N. Takakura, X. L. Huang, T. Naruse, I. Hamaguchi, D. J. Dumont, G. D. Yancopoulos, and T. Suda, Immunity, 9, 677 (1998).

    Article  CAS  Google Scholar 

  47. S. Esser, M. G. Lampugnani, M. Corada, E. Dejana, and W. Risau, J. Cell Sci., 111(Pt 13), 1853 (1998).

    CAS  Google Scholar 

  48. C. L. Lien, C. Wu, B. Mercer, R. Webb, J. A. Richardson, and E. N. Olson, Development, 126, 75 (1999).

    CAS  Google Scholar 

  49. C. Soudais, M. Bielinska, M. Heikinheimo, C. A. MacArthur, N. Narita, J. E. Saffitz, M. C. Simon, J. M. Leiden, and D. B. Wilson, Development, 121, 3877 (1995).

    CAS  Google Scholar 

  50. M. Abdul-Ghani, D. Dufort, R. Stiles, Y. De Repentigny, R. Kothary, and L. A. Megeney, Mol. Cell Biol., 31, 163 (2011).

    Article  CAS  Google Scholar 

  51. T. K. Ghosh, F. F. Song, E. A. Packham, S. Buxton, T. E. Robinson, J. Ronksley, T. Self, A. J. Bonser, and J. D. Brook, Mol. Cell Biol., 29, 2205 (2009).

    Article  CAS  Google Scholar 

  52. B. Zhou, B. Wu, K. L. Tompkins, K. L. Boyer, J. C. Grindley, and H. S. Baldwin, Development, 132, 1137 (2005).

    Article  CAS  Google Scholar 

  53. M. Pesce and H. R. Scholer, Stem Cells, 19, 271 (2001).

    Article  CAS  Google Scholar 

  54. S. H. Moon, J. Ju, S. J. Park, D. Bae, H. M. Chung, and S. H. Lee, Biomater., 35, 5987 (2014).

    Article  CAS  Google Scholar 

  55. R. Yao, J. Wang, X. Li, D. J. Jung, H. Qi, K. K. Kee, and Y. Du, Small, 10, 4311 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Shik Hwang or Ali Khademhosseini.

Additional information

These authors equally contributed to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cha, J.M., Bae, H., Sadr, N. et al. Embryoid body size-mediated differential endodermal and mesodermal differentiation using polyethylene glycol (PEG) microwell array. Macromol. Res. 23, 245–255 (2015). https://doi.org/10.1007/s13233-015-3034-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-015-3034-0

Keywords

Navigation