Skip to main content

Thermal imidization peculiarities of electrospun BPDA-PDA/ODA copolyamic acid nanofibers

Abstract

Copolyamic acid (coPAA) based on 4,4′-oxydianiline (ODA), p-phenylenediamine (PDA) and 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) was synthesized in N,N-dimethylformamide (DMF). The preparation of continuous defect-free nanofibers from BPDA-PDA/ODA coPAA was achieved by electrospinning of its DMF solution. The average fiber diameter significantly increased from 385 to 590 nm on increasing the total polymer concentration of the spinning solutions from 5 to 7 wt%. The addition of dodecylethyldimethylammonium bromide (DEDAB) salt to the spinning solution resulted in the procurement of coPAA nanofibers with a much smaller (more than 3 times) average diameter. The coPAA imidization process was investigated through FTIR spectroscopy. The chemical composition and morphology of coPI nanofibers were assessed by X-ray photoelectron spectroscopy and scanning electron microscopy. Imidization under isothermal conditions proceeded faster in the first stage. Activation energies in the first and second imidization stages were similar when DEDAB had been added into the electrospinning solution. Cylindrical or crimped defect-free nanofibers of BPDA-PDA/ODA copolyimide (coPI) were obtained by the stepped thermal imidization of coPAA. The morphology of coPI nanofibers depends on the curing temperature. The crimped coPI nanofibers were most probably due to the relief of residual stress when the curing temperature was higher than the polymer glass transition temperature.

This is a preview of subscription content, access via your institution.

References

  1. Z. -M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, Composites Sci. Techn., 63, 2223 (2003).

    Article  CAS  Google Scholar 

  2. P. Supaphol, O. Suwantong, P. Sangsanoh, S. Srinivasan, R. Jayakumar, and S. V. Nair, Adv. Polym. Sci., 246, 213 (2012).

    Article  CAS  Google Scholar 

  3. V. Thavasi, G. Singh, and S. Ramakrisha, Energy Environ. Sci., 1, 205 (2008).

    Article  CAS  Google Scholar 

  4. P. Zahedi, I. Rezaeian, S. O. Ranaei-Siadat, S. H. Jafari, and P. Supaphol, Polym. Adv. Technol., 21, 77 (2010).

    CAS  Google Scholar 

  5. D. Paneva, M. Ignatova, N. Manolova, and I. Rashkov, in Nanofibers: Fabrication, Performance, and Applications, W. N. Chang, Ed., Nova Science Publishers, New York, 2009, pp 73–151.

    Google Scholar 

  6. D. Paneva, R. Mincheva, E. Yancheva, N. Manolova, O. Stoilova, Ph. Dubois, and I. Rashkov, in Chitosan: Manufacture, Properties, and Usage, S. P. Davis, Ed., Nova Science Publishers, Inc., New York, 2011, pp 261–320.

    Google Scholar 

  7. M. Ignatova, O. Stoilova, N. Manolova, D. G. Mita, N. Diano, C. Nicolucci, and I. Rashkov, Eur. Polym. J., 45, 2494 (2009).

    Article  CAS  Google Scholar 

  8. M. Ignatova, N. Manolova, N. Markova, and I. Rashkov, Macromol. Biosci., 9, 102 (2009).

    Article  CAS  Google Scholar 

  9. P. M. Hergenrother, K. A. Watson, J. G. Smith, J. W. Connell, and R. Yokota, Polymer, 43, 5077 (2002).

    Article  CAS  Google Scholar 

  10. H. Inoue, Y. Sasaki, and T. Ogawa, J. Appl. Polym. Sci., 62, 2303 (1996).

    Article  CAS  Google Scholar 

  11. E. Mazoniene, J. Bendoraitiene, L. Peciulyte, A. Zemaitaitis, and S. Diliunas, Progress. Solid State Chem., 34, 201 (2006).

    Article  CAS  Google Scholar 

  12. C. Huang, S. Chen, D. H. Reneker, C. Lai, and H. Hou, Adv. Mater., 18, 668 (2006).

    Article  CAS  Google Scholar 

  13. F. Chen, X. Peng, T. Li, S. Chen, X. F. Wu, D. H. Reneker, and H. Hou, J. Phys. Appl. Phys., 41, 1810 (2008).

    Google Scholar 

  14. S. Chen, P. Hu, A. Greiner, C. Cheng, H. Cheng, F. Chen, and H. Hou, Nanotechnology, 19, 1 (2008).

    Google Scholar 

  15. C. Huang, S. Wang, H. Zhang, T. Li, S. Chen, C. Lai, and H. Hou, Eur. Polym. J., 42, 1099 (2006).

    Article  CAS  Google Scholar 

  16. C. Cheng, J. Chen, F. Chen, P. Hu, X. F. Wu, D. H. Reneker, and H. Hou, J. Appl. Polym. Sci., 116, 1581 (2010).

    CAS  Google Scholar 

  17. A. V. Goponenko, H. Hou, and Y. A. Dzenis, Polymer, 52, 3776 (2011).

    Article  CAS  Google Scholar 

  18. G. X. Xie, J. Electr. Insul. Mater., 5, 26 (1992).

    Google Scholar 

  19. Y. -K. Xu, M.-S. Zhan, and K. Wang, J. Polym. Sci. Part B: Polym. Phys., 42, 2490 (2004).

    Article  CAS  Google Scholar 

  20. Y. Seo, S. M. Lee, D. Y. Kim, and K. U. Kim, Macromolecules, 30, 3747 (1997).

    Article  CAS  Google Scholar 

  21. M. Spasova, R. Mincheva, D. Paneva, N. Manolova, and I. Rashkov, J. Bioact. Compat. Polym., 21, 465 2006).

    Article  CAS  Google Scholar 

  22. W. S. Rasband, ImageJ, U.S. National Institute of Health, Bethesda, 1997–2006, http://rsb.info.nih.gov/ij/.

  23. J. Zeng, H. Hou, V. J. H. Wendor, and A. Greiner, e-Polymers, Article No., 038 (2005).

  24. J. Zeng, H. Hou, A. Schaper, V. J. H. Wendor, and A. Greiner, e-Polymers, Article No., 009 (2003).

  25. M. Ignatova, N. Manolova, and I. Rashkov, Eur. Polym J., 43, 1112 (2007).

    Article  CAS  Google Scholar 

  26. M. Ignatova, K. Starbova, N. Markova, N. Manolova, and I. Rashkov, Carbohydr. Res., 341, 2098 (2006).

    Article  CAS  Google Scholar 

  27. C. K. Lee, S. I. Kim, and S. J. Kim, Synth. Met., 154, 209 (2005).

    Article  CAS  Google Scholar 

  28. R. Mincheva, D. Paneva, N. Manolova, and I. Rashkov, J. Bioact. Compat. Polym., 20, 419 (2005).

    Article  CAS  Google Scholar 

  29. M. Spasova, N. Manolova, D. Paneva, and I. Rashkov, e-Polymers, Article No., 056 (2004).

  30. M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A. Laius, in Polyimides-Thermally Stable Polymers, Consultants Bureau, New York, 1987, p 318.

    Google Scholar 

  31. M. J. Brekner and C. Feger, J. Polym. Sci. Part A. Polym. Chem., 25, 2005 (1987).

    Article  CAS  Google Scholar 

  32. D. C. Surrao, J. W. Hayami, S. D. Waldman, and B. G. Amsden, Biomacromolecules, 11, 3624 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Peciulyte.

Additional information

The image from this article is used as the cover image of Volume 21, Issue 4.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Peciulyte, L., Rutkaite, R., Zemaitaitis, A. et al. Thermal imidization peculiarities of electrospun BPDA-PDA/ODA copolyamic acid nanofibers. Macromol. Res. 21, 419–426 (2013). https://doi.org/10.1007/s13233-013-1032-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-013-1032-7

Keywords

  • electrospinning
  • BPDA-PDA/ODA copolyimide nanofibers
  • crimped nanofibers