Macromolecular Research

, Volume 21, Issue 4, pp 419–426 | Cite as

Thermal imidization peculiarities of electrospun BPDA-PDA/ODA copolyamic acid nanofibers

  • Laura PeciulyteEmail author
  • Ramune Rutkaite
  • Algirdas Zemaitaitis
  • Milena Ignatova
  • Iliya Rashkov
  • Nevena Manolova


Copolyamic acid (coPAA) based on 4,4′-oxydianiline (ODA), p-phenylenediamine (PDA) and 3,3′,4,4′-biphenyltetracarboxylic dianhydride (BPDA) was synthesized in N,N-dimethylformamide (DMF). The preparation of continuous defect-free nanofibers from BPDA-PDA/ODA coPAA was achieved by electrospinning of its DMF solution. The average fiber diameter significantly increased from 385 to 590 nm on increasing the total polymer concentration of the spinning solutions from 5 to 7 wt%. The addition of dodecylethyldimethylammonium bromide (DEDAB) salt to the spinning solution resulted in the procurement of coPAA nanofibers with a much smaller (more than 3 times) average diameter. The coPAA imidization process was investigated through FTIR spectroscopy. The chemical composition and morphology of coPI nanofibers were assessed by X-ray photoelectron spectroscopy and scanning electron microscopy. Imidization under isothermal conditions proceeded faster in the first stage. Activation energies in the first and second imidization stages were similar when DEDAB had been added into the electrospinning solution. Cylindrical or crimped defect-free nanofibers of BPDA-PDA/ODA copolyimide (coPI) were obtained by the stepped thermal imidization of coPAA. The morphology of coPI nanofibers depends on the curing temperature. The crimped coPI nanofibers were most probably due to the relief of residual stress when the curing temperature was higher than the polymer glass transition temperature.


electrospinning BPDA-PDA/ODA copolyimide nanofibers crimped nanofibers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Z. -M. Huang, Y.-Z. Zhang, M. Kotaki, and S. Ramakrishna, Composites Sci. Techn., 63, 2223 (2003).CrossRefGoogle Scholar
  2. (2).
    P. Supaphol, O. Suwantong, P. Sangsanoh, S. Srinivasan, R. Jayakumar, and S. V. Nair, Adv. Polym. Sci., 246, 213 (2012).CrossRefGoogle Scholar
  3. (3).
    V. Thavasi, G. Singh, and S. Ramakrisha, Energy Environ. Sci., 1, 205 (2008).CrossRefGoogle Scholar
  4. (4).
    P. Zahedi, I. Rezaeian, S. O. Ranaei-Siadat, S. H. Jafari, and P. Supaphol, Polym. Adv. Technol., 21, 77 (2010).Google Scholar
  5. (5).
    D. Paneva, M. Ignatova, N. Manolova, and I. Rashkov, in Nanofibers: Fabrication, Performance, and Applications, W. N. Chang, Ed., Nova Science Publishers, New York, 2009, pp 73–151.Google Scholar
  6. (6).
    D. Paneva, R. Mincheva, E. Yancheva, N. Manolova, O. Stoilova, Ph. Dubois, and I. Rashkov, in Chitosan: Manufacture, Properties, and Usage, S. P. Davis, Ed., Nova Science Publishers, Inc., New York, 2011, pp 261–320.Google Scholar
  7. (7).
    M. Ignatova, O. Stoilova, N. Manolova, D. G. Mita, N. Diano, C. Nicolucci, and I. Rashkov, Eur. Polym. J., 45, 2494 (2009).CrossRefGoogle Scholar
  8. (8).
    M. Ignatova, N. Manolova, N. Markova, and I. Rashkov, Macromol. Biosci., 9, 102 (2009).CrossRefGoogle Scholar
  9. (9).
    P. M. Hergenrother, K. A. Watson, J. G. Smith, J. W. Connell, and R. Yokota, Polymer, 43, 5077 (2002).CrossRefGoogle Scholar
  10. (10).
    H. Inoue, Y. Sasaki, and T. Ogawa, J. Appl. Polym. Sci., 62, 2303 (1996).CrossRefGoogle Scholar
  11. (11).
    E. Mazoniene, J. Bendoraitiene, L. Peciulyte, A. Zemaitaitis, and S. Diliunas, Progress. Solid State Chem., 34, 201 (2006).CrossRefGoogle Scholar
  12. (12).
    C. Huang, S. Chen, D. H. Reneker, C. Lai, and H. Hou, Adv. Mater., 18, 668 (2006).CrossRefGoogle Scholar
  13. (13).
    F. Chen, X. Peng, T. Li, S. Chen, X. F. Wu, D. H. Reneker, and H. Hou, J. Phys. Appl. Phys., 41, 1810 (2008).Google Scholar
  14. (14).
    S. Chen, P. Hu, A. Greiner, C. Cheng, H. Cheng, F. Chen, and H. Hou, Nanotechnology, 19, 1 (2008).Google Scholar
  15. (15).
    C. Huang, S. Wang, H. Zhang, T. Li, S. Chen, C. Lai, and H. Hou, Eur. Polym. J., 42, 1099 (2006).CrossRefGoogle Scholar
  16. (16).
    C. Cheng, J. Chen, F. Chen, P. Hu, X. F. Wu, D. H. Reneker, and H. Hou, J. Appl. Polym. Sci., 116, 1581 (2010).Google Scholar
  17. (17).
    A. V. Goponenko, H. Hou, and Y. A. Dzenis, Polymer, 52, 3776 (2011).CrossRefGoogle Scholar
  18. (18).
    G. X. Xie, J. Electr. Insul. Mater., 5, 26 (1992).Google Scholar
  19. (19).
    Y. -K. Xu, M.-S. Zhan, and K. Wang, J. Polym. Sci. Part B: Polym. Phys., 42, 2490 (2004).CrossRefGoogle Scholar
  20. (20).
    Y. Seo, S. M. Lee, D. Y. Kim, and K. U. Kim, Macromolecules, 30, 3747 (1997).CrossRefGoogle Scholar
  21. (21).
    M. Spasova, R. Mincheva, D. Paneva, N. Manolova, and I. Rashkov, J. Bioact. Compat. Polym., 21, 465 2006).CrossRefGoogle Scholar
  22. (22).
    W. S. Rasband, ImageJ, U.S. National Institute of Health, Bethesda, 1997–2006,
  23. (23).
    J. Zeng, H. Hou, V. J. H. Wendor, and A. Greiner, e-Polymers, Article No., 038 (2005).Google Scholar
  24. (24).
    J. Zeng, H. Hou, A. Schaper, V. J. H. Wendor, and A. Greiner, e-Polymers, Article No., 009 (2003).Google Scholar
  25. (25).
    M. Ignatova, N. Manolova, and I. Rashkov, Eur. Polym J., 43, 1112 (2007).CrossRefGoogle Scholar
  26. (26).
    M. Ignatova, K. Starbova, N. Markova, N. Manolova, and I. Rashkov, Carbohydr. Res., 341, 2098 (2006).CrossRefGoogle Scholar
  27. (27).
    C. K. Lee, S. I. Kim, and S. J. Kim, Synth. Met., 154, 209 (2005).CrossRefGoogle Scholar
  28. (28).
    R. Mincheva, D. Paneva, N. Manolova, and I. Rashkov, J. Bioact. Compat. Polym., 20, 419 (2005).CrossRefGoogle Scholar
  29. (29).
    M. Spasova, N. Manolova, D. Paneva, and I. Rashkov, e-Polymers, Article No., 056 (2004).Google Scholar
  30. (30).
    M. I. Bessonov, M. M. Koton, V. V. Kudryavtsev, and L. A. Laius, in Polyimides-Thermally Stable Polymers, Consultants Bureau, New York, 1987, p 318.Google Scholar
  31. (31).
    M. J. Brekner and C. Feger, J. Polym. Sci. Part A. Polym. Chem., 25, 2005 (1987).CrossRefGoogle Scholar
  32. (32).
    D. C. Surrao, J. W. Hayami, S. D. Waldman, and B. G. Amsden, Biomacromolecules, 11, 3624 (2010).CrossRefGoogle Scholar

Copyright information

© The Polymer Society of Korea and Springer Sciene+Business Media Dordrecht 2013

Authors and Affiliations

  • Laura Peciulyte
    • 1
    Email author
  • Ramune Rutkaite
    • 1
  • Algirdas Zemaitaitis
    • 1
  • Milena Ignatova
    • 2
  • Iliya Rashkov
    • 2
  • Nevena Manolova
    • 2
  1. 1.Laboratory of Biopolymer Research, Faculty of Chemical TechnologyKaunas University of TechnologyKaunasLithuania
  2. 2.Laboratory of Bioactive Polymers, Institute of PolymersBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations