A classification of tetravalent arc-transitive graphs of order 5p2

Abstract

Let s be a positive integer. A graph is s-transitive if its automorphism group is transitive on s-arcs but not on (s + 1)-arcs. Let p be a prime. In this article a complete classification of tetravalent s-transitive graphs of order 5p2 is given.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y. G. Baik, Y.-Q. Feng, H. S. Sim, and M. Y. Xu, On the normality of Cayley graphs of abelian groups, Algebra Colloq., 5 (1998), 297–304.

    MathSciNet  MATH  Google Scholar 

  2. 2.

    N. Biggs, Algebraic graph theory, second ed., Cambridge University Press, Cambridge, 1993.

    Google Scholar 

  3. 3.

    W. Bosma, C. Cannon, and C. Playoust, The MAGMA algebra system I: the user language, J. Symbolic Comput., 24 (1997), 235–265.

    MathSciNet  Article  Google Scholar 

  4. 4.

    Y. Bugeaud, Z. Cao, and M. Mignotte, On simple K4-groups, J. Algebra., 241(2) (2001), 658–668.

    MathSciNet  Article  Google Scholar 

  5. 5.

    C. Y. Chao, On the classification of symmetric graphs with a prime number of vertices, Tran. Amer. Math. Soc., 158 (1971), 247–256.

    MathSciNet  Article  Google Scholar 

  6. 6.

    Y. Cheng and J. Oxley, On weakly symmetric graphs of order twice a prime, J. Combin. Theory B, 42 (1987), 196–211.

    MathSciNet  Article  Google Scholar 

  7. 7.

    M. Conder and C. E. Praeger, Remarks on path-transitivity on finite graphs, European J. Combin., 17 (1996), 371–378.

    MathSciNet  Article  Google Scholar 

  8. 8.

    D.Ž. Djoković and G. L. Miller, Regular groups of automorphisms of cubic graphs, J. Combin. Theory B, 29 (1980), 195–230.

    MathSciNet  Article  Google Scholar 

  9. 9.

    X. G. Fang, C. H. Li, and M. Y. Xu, On edge-transitive Cayley graphs of valency four, European J. Combin., 25 (2004), 1107–1116.

    MathSciNet  Article  Google Scholar 

  10. 10.

    Y.-Q. Feng and J. H. Kwak, One-regular cubic graphs of order a small number times a prime or a prime square, J. Austral. Math. Soc., 76 (2004), 345–356.

    MathSciNet  Article  Google Scholar 

  11. 11.

    Y.-Q. Feng and J. H. Kwak, Classifying cubic symmetric graphs of order 10p or 10p2, Science in China A, 49 (2006), 300–319.

    MathSciNet  Article  Google Scholar 

  12. 12.

    Y.-Q. Feng and J. H. Kwak, Cubic symmetric graphs of order twice an odd prime power, J. Austral. Math. Soc., 81 (2006), 153–164.

    MathSciNet  Article  Google Scholar 

  13. 13.

    Y.-Q. Feng and J. H. Kwak, Cubic symmetric graphs of order a small number times a prime or a prime square, J. Combin. Theory B, 97 (2007), 627–646.

    MathSciNet  Article  Google Scholar 

  14. 14.

    Y.-Q. Feng, J. H. Kwak, and K. S. Wang, Classifying cubic symmetric graphs of order 8p or 8p2, European J. Combin., 26 (2005), 1033–1052.

    MathSciNet  Article  Google Scholar 

  15. 15.

    A. Gardiner and C. E. Praeger, On 4-valent symmetric graphs, European J. Combin., 15 (1994), 375–381.

    MathSciNet  Article  Google Scholar 

  16. 16.

    A. Gardiner and C. E. Praeger, A characterization of certain families of 4-valent symmetric graphs, European. J. Combin., 15 (1994), 383–397.

    MathSciNet  Article  Google Scholar 

  17. 17.

    M. Ghasemi, Tetravalent arc-transitive graphs of order 3p2, Discuss. Math. Graph Theory, 34 (2014), 567–575.

    MathSciNet  Article  Google Scholar 

  18. 18.

    M. Ghasemi and R. Varmazyar, A Family of tetravalent one-regular graphs, Ars Comb., 134 (2017), 283–293.

    MathSciNet  MATH  Google Scholar 

  19. 19.

    M. Ghasemi and J.-X. Zhou, Tetravalent s-transitive graphs of order 4p2, Graphs and Combinatorics, 29(1) (2013), 87–97.

    MathSciNet  Article  Google Scholar 

  20. 20.

    M. Herzog, On finite simple groups of order divisible by three primes only, J. Algebra, 120(10) (1968), 383–388.

    MathSciNet  Article  Google Scholar 

  21. 21.

    C. H. Li, Finite s-arc-transitive graphs, The second internetional workshop on group theory and algebraic combinatorics, Peking University, Beijing, 2008.

    Google Scholar 

  22. 22.

    C. H. Li, The finite vertex-primitive and vertex-biprimitive s-transitive graphs for s ≥ 4, Tran. Amer. Math. Soc., 353 (2001), 3511–3529.

    MathSciNet  Article  Google Scholar 

  23. 23.

    C. H. Li, Z. P. Lu, and D. Marušič, On primitive permutation groups with small suborbits and their orbital graphs, J. Algebra, 279 (2004), 749–770.

    MathSciNet  Article  Google Scholar 

  24. 24.

    C. H. Li, Z. P. Lu, and H. Zhang, Tetravalent edge-transitive Cayley graphs with odd number of vertices, J. Combin. Theory B, 96 (2006), 164–181.

    MathSciNet  Article  Google Scholar 

  25. 25.

    P. Potočnik, P. Spiga, and G. Verret, http://www.matapp.unimib.it/spiga/

  26. 26.

    P. Potočnik, P. Spiga, and G. Verret, Cubic vertex-transitive graphs on up to 1280 vertices, arXiv:1201.5317v1 [math.CO].

  27. 27.

    C. E. Praeger, An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to 2-arc transitive graphs, J. London. Math. Soc., 47 (1992), 227–239.

    MathSciNet  MATH  Google Scholar 

  28. 28.

    C. E. Praeger, R. J. Wang, and M. Y. Xu, Symmetric graphs of order a product of two distinct primes, J. Combin. Theory B, 58 (1993), 299–318.

    MathSciNet  Article  Google Scholar 

  29. 29.

    C. E. Praeger and M. Y. Xu, Vertex-primitive graphs of order a product of two distinct primes, J. Combin. Theory B, 59 (1993), 245–266.

    MathSciNet  Article  Google Scholar 

  30. 30.

    W. J. Shi, On simple K4-groups, Chines Science Bull., 36(17) (1991), 1281–1283.

    Article  Google Scholar 

  31. 31.

    W. T. Tutte, A family of cubical graphs, Proc. Camb. Phil. Soc., 43 (1947), 621–624.

    MathSciNet  MATH  Google Scholar 

  32. 32.

    R. J. Wang and M. Y. Xu, A classification of symmetric graphs of order 3p, J. Combin. Theory B, 58 (1993), 197–216.

    MathSciNet  Article  Google Scholar 

  33. 33.

    R. Weiss, The nonexistence of 8-transitive graphs, Combinatorica, 1 (1981), 309–311.

    MathSciNet  Article  Google Scholar 

  34. 34.

    S. Wilson and P. Potočnik, A Census of edge-transitive tetravalent graphs, http://jan.ucc.nau.edu/swilson/C4Site/index.html.

  35. 35.

    M. Y. Xu, A note on one-regular graphs, Chin. Scin. Bull., 45 (2000), 2160–2162.

    Article  Google Scholar 

  36. 36.

    J. Xu and M. Y. Xu, Arc-transitive Cayley graphs of valency at most four on abelian groups, Southeast Asian Bull. Math., 25 (2001), 355–363.

    MathSciNet  Article  Google Scholar 

  37. 37.

    J.-X. Zhou, Tetravalent s-transitive graphs of order 4p, Discrete Math., 309 (2009), 6081–6086.

    MathSciNet  Article  Google Scholar 

  38. 38.

    J.-X. Zhou and Y.-Q. Feng, Tetravalent s-transitive graphs of order twice a prime power, J. Austral. Math. Soc., 88 (2010), 277–288.

    MathSciNet  Article  Google Scholar 

  39. 39.

    S. Zhang and W. J. Shi, Revisiting the number of simple K4-groups, arXiv: 1307.8079v1 [math.NT] (2013).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Mohsen Ghasemi or Rezvan Varmazyar.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, M., Varmazyar, R. A classification of tetravalent arc-transitive graphs of order 5p2. Indian J Pure Appl Math 51, 403–411 (2020). https://doi.org/10.1007/s13226-020-0407-7

Download citation

Key words

  • s-Transitive graphs
  • symmetric graphs
  • Cayley graphs

2010 Mathematics Subject Classification

  • 05C25
  • 20B25