Evolution of freshwater Diaporthomycetidae (Sordariomycetes) provides evidence for five new orders and six new families

Abstract

Cancellidium is a remarkable fungal genus which has been collected from wood submerged in freshwater and has unique conidia that are important in dispersal in running streams. With such a remarkable morphology, one would have expected it to be a distinct family or order. However, due to the dearth of molecular evidence in related taxa, this genus has previously been placed in the order Hypocreales, subclass Hypocreomycetidae of Sordariomycetes. In this study, we made three new collections of this remarkable aquatic genus from streams in China and Thailand, isolated them into culture, extracted DNA and carried out multigene phylogenetic analysis and divergence time estimation which placed the genus in Diaporthomycetidae. This is one of the seven subclasses of Sordariomycetes and contains 30 lineages that are only known from freshwater. The subclass is therefore of interest when considering the evolution of freshwater fungi. Several lineages of Diaporthomycetidae are morphologically unique and taxa cluster with strong support, but have weak support at the base of the trees. The phylogenetic and MCC trees generated in this study indicate that Aquapteridospora, Barbatosphaeriaceae, Bullimyces, Cancellidium, Ceratolenta, Conlarium, Phialemoniopsis, Pseudostanjehughesia and Rhamphoriaceae are distinct genera/families that evolved in the family/order time frame. The new orders Barbatosphaeriales (177 MYA), Cancellidiales (137 MYA), Ceratolentales (147 MYA), Conlariales (138 MYA) and Rhamphoriales (133 MYA) and six new families, Aquapteridosporaceae (110 MYA), Cancellidiaceae (137 MYA), Ceratolentaceae (81 MYA), Bullimycetaceae (81 MYA), Phialemoniopsaceae (59 MYA), and Pseudostanjehughesiaceae (111 MYA) are introduced with evidence from phylogenies, divergence estimates and distinct morphologies. Of these families, Aquapteridosporaceae, Cancellidiaceae, Bullimycetaceae, and Pseudostanjehughesiaceae are only known from freshwater.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Agrios GN (2005) Plant pathology, 5th edn. San Diego Calf. USA, Elsevier Academia Press

    Google Scholar 

  2. Alvarez-Loayza P, White JF Jr, Torres MS, Balslev H, Kristiansen T, Svenning JC, Gil N (2011) Light converts endosymbiotic fungus to pathogen, influencing seedling survival and niche-space filling of a common tropical tree Iriartea deltoidea. PLoS ONE 6:16386

    Article  CAS  Google Scholar 

  3. Aylward J, Steenkamp ET, Dreyer LL, Roets F, Wingfield BD, Wingfield MJ (2017) A plant pathology perspective of fungal genome sequencing. IMA Fungus 8:1–15

    PubMed  PubMed Central  Article  Google Scholar 

  4. Bao DF, McKenzie EHC, Bhat DJ, Hyde KD, Luo ZL, Shen HW, Su HY (2020) Acrogenospora (Acrogenosporaceae, Minutisphaerales) appears to be a very diverse genus. Front Microbiol 11:1606

    PubMed  PubMed Central  Article  Google Scholar 

  5. Beakes GW, Glockling SL, Sekimoto S (2012) The evolutionary phylogeny of the oomycete “fungi.” Protoplasma 249:3–19

    PubMed  Article  Google Scholar 

  6. Beakes GW, Sekimoto S (2009) The evolutionary phylogeny of oomycetes—insights gained from studies of holocarpic parasites of algae and invertebrates. Wiley, New York, pp 1–24

    Google Scholar 

  7. Beimforde C, Feldberg K, Nylinder S, Rikkinen J, Tuovila H, Dörfelt H, Gube M, Jackson DJ, Reitner J, Seyfullah LJ, Schmidt AR (2014) Estimating the Phanerozoic history of the Ascomycota lineages: combining fossil and molecular data. Mol Phylogenet Evol 78:386–398

    PubMed  Article  Google Scholar 

  8. Berbee ML, Taylor JW (2001) Fungal molecular evolution: gene trees and geologic time. Systematics and evolution. Springer, New York, pp 229–245

    Google Scholar 

  9. Bronson AW, Klymiuk AA, Stockey RA, Tomescu AMF (2013) A perithecial Sordariomycete (Ascomycota, Diaporthales) from the Lower Cretaceous of Vancouver Island, British Columbia, Canada. Int J Plant Sci 174:278–292

    Article  Google Scholar 

  10. Burdon J, Laine A (2019) Coevolution and host and pathogen life-histories. Evolutionary dynamics of plant-pathogen interactions. Cambridge University Press, Cambridge, pp 219–242

    Google Scholar 

  11. Burdon JJ, Thrall PH (2009) Coevolution of plants and their pathogens in natural habitats. Science 324:755–756

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Cai L, Hyde KD, Tsui CKM (2006) Genera of freshwater fungi. Fungal Divers 18:1–261

    Google Scholar 

  13. Cai L, Zhang KQ, Hyde KD (2003) Freshwater ascomycetes. In: Tsui CKM, Hyde KD (eds) Freshwater mycology. Fungal Diversity Press, Hong Kong, pp 275–326

    Google Scholar 

  14. Chomnunti P, Hongsanan S, Aguirre-Hudson B, Tian Q, Peršoh D, Dhami MK, Alias AS, Xu JC, Liu XZ, Stadler M, Hyde KD (2014) The sooty moulds. Fungal Divers 66:1–36

    Article  Google Scholar 

  15. Crane PE, Chakravarty P, Hutchison LJ, Hiratsuka Y (1996) Wood-degrading capabilities of microfungi isolated from Populus tremuloides. Mater Org 30:33–44

    Google Scholar 

  16. Crous PW, Luangsa-Ard JJ, Wingfield MJ, Carnegie AJ, Hernández-Restrepo M, Lombard L, Roux J, Barreto RW, Baseia IG, Cano-Lira JF, Martín MP, Morozova OV, Stchigel AM, Summerell BA, Brandrud TE, Dima B, García D, Giraldo A, Guarro J, Gusmão LFP, Khamsuntorn P, Noordeloos ME, Nuankaew S, Pinruan U, Rodríguez-Andrade E, Souza-Motta CM, Thangavel R, van Iperen AL, Abreu VP, Accioly T, Alves JL, Andrade JP, Bahram M, Baral HO, Barbier E, Barnes CW, Bendiksen E, Bernard E, Bezerra JDP, Bezerra JL, Bizio E, Blair JE, Bulyonkova TM, Cabral TS, Caiafa MV, Cantillo T, Colmán AA, Conceição LB, Cruz S, Cunha AOB, Darveaux BA, da Silva AL, da Silva GA, da Silva GM, da Silva RMF, de Oliveira RJV, Oliveira RL, De Souza JT, Dueñas M, Evans HC, Epifani F, Felipe MTC, Fernández-López J, Ferreira BW, Figueiredo CN, Filippova NV, Flores JA, Gené J, Ghorbani G, Gibertoni TB, Glushakova AM, Healy R, Huhndorf SM, Iturrieta-González I, Javan-Nikkhah M, Juciano RF, Jurjević Ž, Kachalkin AV, Keochanpheng K, Krisai-Greilhuber I, Li YC, Lima AA, Machado AR, Madrid H, Magalhães OMC, Marbach PAS, Melanda GCS, Miller AN, Mongkolsamrit S, Nascimento RP, Oliveira TGL, Ordoñez ME, Orzes R, Palma MA, Pearce CJ, Pereira OL, Perrone G, Peterson SW, Pham THG, Piontelli E, Pordel A, Quijada L, Raja HA, Rosas de Paz E, Ryvarden L, Saitta A, Salcedo SS, Sandoval-Denis M, Santos TAB, Seifert KA, Silva BDB, Smith ME, Soares AM, Sommai S, Sousa JO, Suetrong S, Susca A, Tedersoo L, Telleria MT, Thanakitpipattana D, Valenzuela-Lopez N, Visagie CM, Zapata M, Groenewald JZ (2018) Fungal Planet description sheets: 785–867. Persoonia 41:238–417

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Crous PW, Wingfield MJ, Burgess TI, Carnegie AJ, Hardy GESJ, Smith D, Summerell BA, Cano-Lira JF, Guarro J, Houbraken J, Lombard L, Martin MP, Sandoval-Denis M, Alexandrova AV, Barnes CW, Baseia IG, Bezerra JDP, Guarnaccia V, May TW, Hernandez-Restrepo M, Stchigel AM, Miller AN, Ordonez ME, Abreu VP, Accioly T, Agnello C, Agustin Colman A, Albuquer-de Almeida DAC, de Carvalho Junior AA, Decock CA, Delgat L, Denman S, Dimitrov RA, Edwards J, Fedosova AG, Ferreira RJ, Firmino AL, Flores JA, Garcia D, Gene J, Giraldo A, Gois JS, Gomes AAM, Goncalves CM, Gouliamova DE, Groenewald M, Gueorguiev BV, Guevara-Suarez M, Gusmao LFP, Hosaka K, Hubka V, Huhndorf SM, Jadan M, Jurjevic Z, Kraak B, Kucera V, Kumar TKA, Kusan I, Lacerda SR, Lamlertthon S, Lisboa WS, Loizides M, Luangsa-ard JJ, Lyskova P, Mac Cormack WP, Macedo DM, Machado AR, Malysheva EF, Marinho P, Matocec N, Meijer M, Mesic A, Mongkolsamrit S, Moreira KA, Morozova OV, Nair KU, Nakamura N, Noisripoom W, Olariaga I, Oliveira RJV, Paiva LM, Pawar P, Pereira OL, Peterson SW, Prieto M, Rodriguez-Andrade E, Rojo De Blas C, Roy M, Santos ES, Sharma R, Silva GA, Souza-Motta CM, Takeuchi-Kaneko Y, Tanaka C, Thakur A, Smith MT, Tkalcec Z, Valenzuela-Lopez N, van der Kleij P, Verbeken A, Viana MG, Wang XW, Groenewald JZ (2017) Fungal planet description sheets: 625–715. Persoonia 39:270–467

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Delaye L, García-Guzmán G, Heil M (2013) Endophytes versus biotrophic and necrotrophic pathogens - are fungal lifestyles evolutionarily stable traits? Fungal Divers 60:125–35

    Article  Google Scholar 

  19. Descals E, Webster J (1982) Taxonomic studies on aquatic hyphomycetes: III. Some new species and a new combination. Trans Brit Mycol Soc 78:405–437

    Article  Google Scholar 

  20. Dong W, Wang B, Hyde KD, McKenzie EHC, Bhat DJ, Raja HA, Tanaka K, Abdel-Wahab MA, Abdel-Aziz FA, Doilom M, Phookamsak R, Hongsanan S, Wanasinghe DN, Yu XD, Wang GN, Yang H, Yang J, Thambugala AN, Tian Q, Luo ZL, Yang JB, Miller AN, Fournier J, Boonmee S, Hu DM, Nalumpang S, Zhang H (2020) Freshwater Dothideomycetes. Fungal Divers 105:319–575

    Article  Google Scholar 

  21. Drummond AJ, Rambaut A (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol Biol 7:214

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Eaton CJ, Cox MP, Scott B (2011) What triggers grass endophytes to switch from mutualism to pathogenism? Plant Sci 180:190–195

    CAS  PubMed  Article  Google Scholar 

  24. Eshet Y, Rampino MR, Visscher H (1995) Fungal event and palynological record of ecological crisis and recovery across the Permian-Triassic boundary. Geology 23:967–970

    Article  Google Scholar 

  25. Ferrer A, Miller AN, Sarmiento C, Shearer CA (2012) Three new genera representing novel lineages of Sordariomycetidae (Sordariomycetes, Ascomycota) from tropical freshwater habitats in Costa Rica. Mycologia 104:865–879

    PubMed  Article  Google Scholar 

  26. Fisher P, Petrini O, Webster J (1991) Aquatic hyphomycetes and other fungi in living aquatic and terrestrial roots of Alnus glutinosa. Mycol Res 95:543–547

    Article  Google Scholar 

  27. Fryar SC, Booth W, Davies J, Hodgkiss IJ, Hyde KD (2004) Distribution of fungi on wood in the Tutong River, Brunei. Fungal Divers 17:17–38

    Google Scholar 

  28. Gams W, McGinnis MR (1983) Phialemonium, a new anamorph genus intermediate between Phialophora and Acremonium. Mycologia 75:977–987

    Article  Google Scholar 

  29. Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie XQ, Zhou G, Peng G (2011) Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M acridum. PLoS Genet 7:e1001264

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  30. Ghimire SR, Hyde KD (2004) Fungal endophytes. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer-Verlag, Berlin, pp 281–292

    Google Scholar 

  31. Gostinčar C, Zajc J, Lenassi M, Plemenitaš A, De Hoog S, Al-Hatmi AM, Gunde-Cimerman N (2018) Fungi between extremotolerance and opportunistic pathogenicity on humans. Fungal Divers 93:195–213

    Article  Google Scholar 

  32. Guterres DC, Galvão-Elias S, de Souza BCP, Pinho DB, dos Santos MDDM, Miller RNG, Dianese JC (2018) Taxonomy, phylogeny, and divergence time estimation for Apiosphaeria guaranitica, a neotropical parasite on bignoniaceous hosts. Mycologia 110:526–545

    PubMed  Article  Google Scholar 

  33. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  34. Halleen F, Mostert L, Crous PW (2007) Pathogenicity testing of lesser known vascular fungi of grapevines. Australas Plant Pathol 36:277–285

    Article  Google Scholar 

  35. Haridas S, Albert R, Binder M, Bloem J, LaButti K, Salamov A, Andreopoulos B, Baker SE, Barry K, Bills G, Bluhm BH (2020) 101 Dothideomycetes genomes: a test case for predicting lifestyles and emergence of pathogens. Stud mycol 96:141–153

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges Blair S (2001) Molecular evidence for the early colonization of land by Fungi and plants. Science 293:1120–1133

    Article  Google Scholar 

  37. Hendel B, Sinsabaugh RL, Marxsen J (2005) Lignin-degrading enzymes: phenoloxidase and peroxidase. In: Graca MAS, Barlocher F, Gessner MO (eds) Methods to study litter decomposition. Springer, Dordrecht, pp 273–278

    Google Scholar 

  38. Ho MY, Chung WC, Huang HC, Chung WH, Chung WH (2012) Identification of endophytic fungi of medicinal herbs of Lauraceae and Rutaceae with antimicrobial property. Taiwania 57:229–241

    Google Scholar 

  39. Hongsanan S, Maharachchikumbura SSN, Hyde KD, Samarakoon MC, Jeewon R, Zhao Q, Al-Sadi AM, Bahkali AH (2017) An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers 84:25–41

    Article  Google Scholar 

  40. Hyde KD, Goh TK (1997) Fungi on submerged wood in a small stream on Mt Lewis. North Queensland. Australia. Muelleria 10:145–157

    Google Scholar 

  41. Hyde KD, Goh TK (1998) Fungi on submerged wood in the riviere St Marie-Louis, The Seychelles. S Afr J Bot 64:330–336

    Article  Google Scholar 

  42. Hyde KD, Fryar S, Tian Q, Bahkali AH, Xu JC (2016) Lignicolous freshwater fungi along a north-south latitudinal gradient in the Asian/Australian region; can we predict the affects of global warming on biodiversity and function? Fungal Ecol 19:190–200

    Article  Google Scholar 

  43. Hyde KD, Maharachchikumbura SS, Hongsanan S, Samarakoon MC, Lucking R, Pem D, Harishchandra D, Jeewon R, Zhao RL, Xu JC, Liu JK (2017) The ranking of fungi: a tribute to David L. Hawksworth on his 70th birthday. Fungal Divers 84:1–23

    Article  Google Scholar 

  44. Hyde KD, Norphanphoun C, Maharachchikumbura SSN, Bhat DJ, Jones EBG, Bundhun D, Chen YJ, Bao DF, Boonmee S, Calabon MS, Chaiwan N, Chethana KWT, Dai DQ, Dayarathne MC, Devadatha B, Dissanayake AJ, Dissanayake LS, Doilom M, Dong W, Fan XL, Goonasekara ID, Hongsanan S, Huang SK, Jayawardena RS, Jeewon R, Karunarathna A, Konta S, Kumar V, Lin CG, Liu JK, Liu NG, Luangsa-ard J, Lumyong S, Luo ZL, Marasinghe DS, McKenzie EHC, Niego AGT, Niranjan M, Perera RH, Phukhamsakda C, Rathnayaka AR, Samarakoon MC, Samarakoon SMBC, Sarma VV, Senanayake IC, Shang QJ, Stadler M, Tibpromma S, Wanasinghe DN, Wei DP, Wijayawardene NN, Xiao YP, Yang J, Zeng XY, Zhang SN, Xiang MM (2020) Refined families of Sordariomycetes. Mycosphere 11:305–1059

    Article  Google Scholar 

  45. Hyde KD, Jeewon R, Chen YJ, Bhunjun CS, Calabon MS, Jiang HB, Lin CG, Norphanphoun C, Sysouphanthong P, Pem D, Tibpromma S, Zhang Q, Doilom M, Jayawardena RS, Liu JK, Maharachchikumbura SSN, Phukhamsakda C, Phookamsak R, Al-Sadi AM, Naritsada Thongklang N, Wang Y, Gafforov Y, Jones EBG, Lumyong S (2020) The numbers of fungi: is the descriptive curve flattening? Fungal Divers 103:219–271

    Article  Google Scholar 

  46. James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schußler AW, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, Whit MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lücking R, Büdel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443:818–822

    CAS  PubMed  Article  Google Scholar 

  47. Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R, Jones EBG, Bahkali AH, Karunarathna SC, Liu JK, Luangsa-Ard JJ, Lumbsch HT, Maharachchikumbura SSN, McKenzie EHC, Moncalvo JM, Ghobad-Nejhad M, Nilsson H, Pang KL, Pereira OL, Phillips AJL, Raspe O, Rollins AW, Romero AI, Etayo J, Selcuk F, Stephenson SL, Suetrong S, Taylor JE, Tsui CKM, Vizzini A, Abdel-Wahab MA, Wen TC, Boonmee S, Dai DQ, Daranagama DA, Dissanayake AJ, Ekanayaka AH, Fryar SC, Hongsanan S, Jayawardena RS, Li WJ, Perera RH, Phookamsak R, De Silva NI, Thambugala KM, Tian Q, Wijayawardene NN, Zhao RL, Zhao Q, Kang JC, Promputtha I (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Divers 74:3–18

    Article  Google Scholar 

  48. Jeewon R, Hyde KD (2016) Establishing species boundaries and new taxa: recommendations to solve taxonomic ambiguities. Mycosphere 7:1669–1677

    Article  Google Scholar 

  49. Jones EBG (2006) Form and function of fungal spore appendages. Mycoscience 47:167–183

    CAS  Article  Google Scholar 

  50. Jones EBG, Hyde KD, Pang KL (2014) Freshwater fungi and fungal-like organisms. De Gruyter, Germany

    Google Scholar 

  51. Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers 73:1–72

    Article  Google Scholar 

  52. Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474:200–203

    CAS  PubMed  Article  Google Scholar 

  53. Katoh K, Standleym DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Kemen E, Jones JD (2012) Obligate biotroph parasitism: can we link genomes to lifestyles? Trends Plant Sci 17:448–457

    CAS  PubMed  Article  Google Scholar 

  55. Kirk PM (1982) New or interesting microfungi VI. Sporidesmiella gen. nov. (hyphomycetes). Trans Br Mycol Soc 79:479–489

    Article  Google Scholar 

  56. Knapp DG, Németh JB, Barry K, Hainaut M, Henrissat B, Johnson J, Kuo A, Lim JH, Lipzen A, Nolan M, Ohm RA (2018) Comparative genomics provides insights into the lifestyle and reveals functional heterogeneity of dark septate endophytic fungi. Sci Rep 8:1–3

    CAS  Article  Google Scholar 

  57. Kodsueb R, Lumyong S, McKenzie EHC, Bahkali AH, Hyde KD (2016) Relationships between terrestrial and freshwater lignicolous fungi. Fungal Ecol 19:155–168

    Article  Google Scholar 

  58. Koroch A, Juliani H, Bischoff J, Lewis E, Bills G, Simon J, White JRJA (2004) Examination of plant biotrophy in the scale insect parasitizing fungus Dussiella tuberiformis. Symbiosis 37:267–280

    Google Scholar 

  59. Krings M, Taylor TN, Dotzler N (2012) Fungal endophytes as a driving force in land plant evolution: evidence from the fossil record. In: Southworth D (ed) Biocomplexity of plant-fungal interactions, First edition. John Wiley & Sons Inc, New York, pp 5–28

  60. Lara E, Moriera D, Lopez-Garcia P (2010) The environmental clade LKM11 and Rozella from the deepest branching clade of the fungi. Protist 161:116–121

    CAS  PubMed  Article  Google Scholar 

  61. Lilley JH, Roberts RJ (1997) Pathogenicity and culture studies comparing the Aphanomyces involved in epizootic ulcerative syndrome (EUS) with other similar fungi. J Fish Dis 20:135–144

    Article  Google Scholar 

  62. Liu JK, Hyde KD, Jeewon R, Phillips AJL, Maharachchikumbura SSN, Ryberg M, Liu ZY, Zhao Q (2017) Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Divers 84:75–99

    Article  Google Scholar 

  63. Liu NG, Lin CG, Liu JK, Samarakoon MC, Hongsanan S, Bhat DJ, Hyde KD, McKenzie EHC, Jumpathong J (2018) Lentimurisporaceae, a new Pleosporalean family with divergence times estimates. Cryptogam Mycol 39:259–282

    CAS  Article  Google Scholar 

  64. Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16:1799–1808

    CAS  PubMed  Article  Google Scholar 

  65. Lucking R, Pfister DH, Plata ER, Lumbsch HT (2009) Fungi evolved right on track. Mycologia 101:810–822

    PubMed  Article  Google Scholar 

  66. Luo ZL, Bao DF, Bhat DJ, Yang J, Chai HM, Li SH, Bahkali AH, Su HY, Hyde KD (2016) Sporoschisma from submerged wood in Yunnan, China. Mycol Prog 15:1145–1155

    Article  Google Scholar 

  67. Luo ZL, Hyde KD, Liu JK, Bhat DJ, Bao DF, Li WL, Su HY (2018) Lignicolous freshwater fungi from China II: Novel Distoseptispora (Distoseptisporaceae) species from northwestern Yunnan Province and a suggested unified method for studying lignicolous freshwater fungi. Mycosphere 9:444–461

    Article  Google Scholar 

  68. Luo ZL, Hyde KD, Liu JK, Maharachchikumbura SSN, Jeewon R, Bao DF, Bhat DJ, Lin CG, Li WL, Yang J, Liu NG, Lu YZ, Jayawardena RS, Li JF, Su HY (2019) Freshwater Sordariomycetes. Fungal Divers 99:451–660

    Article  Google Scholar 

  69. Lutzoni F, Nowak MD, Alfaro ME, Reeb V, Miadlikowska J, Krug M, Arnold AE, Lewis LA, Swofford DL, Hibbett D, Hilu K, James TY, Quandt D, Magallón CS (2018) Contemporaneous radiations of fungi and plants linked to symbiosis. Nat Commun 9:1–11

    Article  CAS  Google Scholar 

  70. Maharachchikumbura SSN, Hyde KD, Jones EBG, McKenzie EHC, Huang SK, Abdel-Wahab MA, Daranagama DA, Dayarathne M, D’souza MJ, Goonasekara ID, Hongsanan S, Jayawardena RS, Kirk PM, Konta S, Liu JK, Liu ZY, Norphanphoun C, Pang KL, Perera RH, Senanayake IC, Shang QJ, Shenoy BD, Xiao YP, Bahkali AH, Kang JC, Somrothipol S, Suetrong S, Wen TC, Xu JC, (2015) Towards a natural classification and backbone tree for Sordariomycetes. Fungal Divers 72:199–301

  71. Mengistu AA (2020) Endophytes: colonization, behaviour, and their role in defense mechanism. Intern J Microbiol 2020, article ID 6927219

  72. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the 2010 Gateway Computing Environments Workshop (GCE). New Orleans, Louisiana, pp. 1–8

  73. Mugnier J (2002) Coevolution of pathogenic fungi and grass hosts. Agric Appl 11:359–373

    Google Scholar 

  74. Nagahama T, Takahashi E, Nagano Y, Abdel-Wahab MA, Miyazaki M (2011) Molecular evidence that deep-branching fungi are major fungal components in deep-sea methane cold-seep sediments. Environ Microbiol 13:2359–2370

    CAS  PubMed  Article  Google Scholar 

  75. Naranjo-Ortiz MA, Gabaldón T (2020) Fungal evolution: cellular, genomic and metabolic complexity. Biol Rev 2020:000–000

    Google Scholar 

  76. Nylander JAA (2004) MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University, Uppsala, Uppsala

    Google Scholar 

  77. Perdomo H, García D, Gené J, Cano J, Sutton DA, Summerbell R, Guarro J (2013) Phialemoniopsis a new genus of Sordariomycetes and new species of Phialemonium and Lecythophora. Mycologia 105:398–421

    PubMed  Article  Google Scholar 

  78. Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei DP, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li JF, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo ZL, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu JC (2019) Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers 95:1–273

    Article  Google Scholar 

  79. Phukhamsakda C, Hongsanan S, Ryberg M, Ariyawansa HA, Chomnunti P, Bahkali AH, Hyde KD (2016) The evolution of Massarineae with Longipedicellataceae fam. nov. Mycosphere 7:1713–1731

    Article  Google Scholar 

  80. Pinnoi A, Lumyong S, Hyde KD, Jones EBG (2006) Biodiversity of fungi on the palm Eleiodoxa conferta in Sirindhorn peat swamp forest, Narathiwat, Thailand. Fungal Divers 22:205–218

    Google Scholar 

  81. Prieto M, Wedin M (2013) Dating the diversification of the major lineages of Ascomycota (Fungi). PLoS ONE 8:1–10

    Google Scholar 

  82. Promputtha I, Hyde KD, McKenzie EHC, Peberdy JF, Lumyong S (2010) Can leaf degrading enzymes provide evidence that endophytic fungi becoming saprobes? Fungal Divers 41:89–99

    Article  Google Scholar 

  83. Promputtha I, Lumyong S, Dhanasekaran V, McKenzie EH, Hyde KD, Jeewon R (2007) A phylogenetic evaluation of whether endophytes become saprotrophs at host senescence. Microb Ecol 53:579–590

    PubMed  Article  Google Scholar 

  84. Purahong W, Hyde KD (2011) Effects of fungal endophytes on grass and non-grass litter decomposition rates. Fungal Divers 47:1–7

    Article  Google Scholar 

  85. Raghukumar S (2017). Origin and evolution of marine fungi. Fungi in coastal and oceanic marine ecosystems, Springer: 307–321

  86. Raja HA, Paguigan ND, Fournier J, Oberlies NH (2017) Additions to Lindgomyces (Lindgomycetaceae, Pleosporales, Dothideomycetes), including two new species occurring on submerged wood from North Carolina, USA, with notes on secondary metabolite profiles. Mycol Prog 16:535–552

    Article  Google Scholar 

  87. Rambaut A (2014) FigTree 1.4.2. http://tree.bio.ed.ac.uk/software/figtree

  88. Rambaut A, Suchard MA, Xie D, Drummond AJ (2013) Tracer version 1.6. http://tree.bio. ed.ac.uk/software/tracer

  89. Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311

    CAS  PubMed  Article  Google Scholar 

  90. Rashmi M, Kushveer JS, Sarma VV (2019) A worldwide list of endophytic fungi with notes on ecology and diversity. Mycosphere 10:798–1079

    Article  Google Scholar 

  91. Réblová M (1998) Fungal diversity in the Czech Republic. New species of Apiorhynchostoma, Capronia, Ceratosphaeria and Lasiosphaeria. Sydowia 50:229–251

    Google Scholar 

  92. Réblová M, Fournier J, Štěpánek V (2016) Two new lineages of aquatic ascomycetes: Atractospora gen. nov. and Rubellisphaeria gen. et sp. nov., and a sexual morph of Myrmecridium montsegurinum sp. nov. Mycol Prog 15:21

    Article  Google Scholar 

  93. Réblová M, Miller A, Réblová K, Štěpánek V (2018) Phylogenetic classification and generic delineation of Calyptosphaeria gen. nov., Lentomitella, Spadicoides and Torrentispora (Sordariomycetes). Stud Mycol 89:1–62

    PubMed  Article  Google Scholar 

  94. Réblová M, Untereiner WA, Réblová K (2013) Novel evolutionary lineages revealed in the Chaetothyriales (Fungi) based on multigene phylogenetic analyses and comparison of ITS secondary structure. PLoS ONE 8:63547

    Article  CAS  Google Scholar 

  95. Richards TA, Leonard G, Mahé F, Del Campo J, Romac S, Jones MDM, Maguire F, Dunthorn M, De Vargas C, Massana R, Chambouvet A (2015) Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc R Soc B 282:1–10

    Article  CAS  Google Scholar 

  96. Rodriguez RJ, White JF Jr, Arnold AE, Redman AR (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    CAS  PubMed  Article  Google Scholar 

  97. Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    PubMed  PubMed Central  Article  Google Scholar 

  98. Saikkonen K, Faeth SH, Helander M, Sullivan TJ (1998) Fungal endophytes: a continuum of interactions with host plants. Annu Rev Ecol Evol Syst 29:319–343

    Article  Google Scholar 

  99. Samarakoon MC, Hyde KD, Hongsanan S, McKenzie EHC, Ariyawansa HA, Promputtha I, Zeng XY, Tian Q, Liu JK (2019) Divergence time calibrations for ancient lineages of Ascomycota classification based on a modern review of estimations. Fungal Divers 96:285–346

    Article  Google Scholar 

  100. Samarakoon MC, Hyde KD, Promputtha I, Hongsanan S, Ariyawansa HA, Maharachchikumbura SSN, Daranagama DA, Stadler M, Mapook A (2016) Evolution of Xylariomycetidae (Ascomycota: Sordariomycetes). Mycosphere 7:1746–1761

    Article  Google Scholar 

  101. Savile DBO (1971) Coevolution of the rust fungi and their hosts. Q Rev Biol 46:211–218

    Article  Google Scholar 

  102. Schoch CL, Crous PW, Groenewald JZ, Boehm EW, Burgess TI, De Gruyter J, De Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–5

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–1052

    CAS  PubMed  Article  Google Scholar 

  104. Schubert JK, Bottjer DJ (1995) Aftermath of the Permian-Triassic mass extinction event: Paleoecology of Lower Triassic carbonates in the western USA. Palaeogeogr Palaeoclimatol Palaeoecol 116:1–39

    Article  Google Scholar 

  105. Seena S, Monroy S (2016) Preliminary insights into the evolutionary relationships of aquatic hyphomycetes and endophytic fungi. Fungal Ecol 19:128–134

    Article  Google Scholar 

  106. Seifert KA, Gams W (2011) The genera of Hyphomycetes-2011 update. Persoonia 27:119–129

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Shaw DE (1994) The aero-aquatic fungus Cancellidium applanatum K. Tubaki in Queensland. Mycologist 8:162–163

    Article  Google Scholar 

  108. Shearer CA (2001) The distribution of freshwater filamentous Ascomycetes. In: Misra JK, Horn BW (eds) Fungal groups: Robert W. Lichtwater commemoration trichomycetes and other. Science Publishers Inc, Enfield, pp 225–292

    Google Scholar 

  109. Shearer CA, Raja HA (2013) Freshwater ascomycetes Database: http://fungi.life.illinois.edu/ (Accessed on May 11, 2013)

  110. Simon L, Bousquet J, Levesque RC, Lalonde M (1993) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  111. Sivichai S, Jones EBG, Hywel-Jones N (2002) Fungal colonisation of wood in a freshwater stream at Tad Phu, Khao Yai National Park, Thailand. Fungal Divers 10:13–129

    Google Scholar 

  112. Song HY, Zhong PA, Liao JL, Wang ZH, Hu DM, Huang YJ (2018) Junewangia aquatica (Junewangiaceae), a new species from freshwater habitats in China. Phytotaxa 336:272–278

    Article  Google Scholar 

  113. Spanu PD, Abbott JC, Amselem J, Burgis TA, Soanes DM, Stüber K, van Themaat EV, Brown JK, Butcher SA, Gurr SJ, Lebrun MH (2010) Genome expansion and gene loss in powdery mildew fungi reveal tradeoffs in extreme parasitism. Science 330:1543–1546

    CAS  PubMed  Article  Google Scholar 

  114. Spatafora JW, Sung GH, Sung JM, Hywel-Jones NL, White JF Jr (2007) Phylogenetic evidence for an animal pathogen origin of ergot and the grass endophytes. Mol Ecol 16:1701–1711

    CAS  PubMed  Article  Google Scholar 

  115. Spatafora JW, Volkmann-Kohlmeyer B, Kohlmeyer J (1998) Independent terrestrial origins of the Halosphaeriales (Marine Ascomycota). Am J Bot 85:1569–1580

    CAS  PubMed  Article  Google Scholar 

  116. Sridhar K, Bärlocher F (1992) Endophytic aquatic hyphomycetes of roots of spruce, birch and maple. Mycol Res 96:305–308

    Article  Google Scholar 

  117. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690

    CAS  PubMed  Article  Google Scholar 

  118. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758–771

    PubMed  Article  Google Scholar 

  119. Stueland S, Hatai K, Skaar I (2005) Morphological and physiological characteristics of Saprolegnia spp. strains pathogenic to Atlantic salmon Salmo salar L. J Fish Dis 28:445–453

    CAS  PubMed  Article  Google Scholar 

  120. Su L, Deng H, Niu YC (2016) Phialemoniopsis endophytica sp. nov., a new species of endophytic fungi from Luffa cylindricca in Henan, China. Mycol Prog 15:48

    Article  Google Scholar 

  121. Suberkropp K (1998) Effect of dissolved nutrients on two aquatic hyphomycetes growing on leaf litter. Mycol Res 102:998–1002

    CAS  Article  Google Scholar 

  122. Suetrong S, Klaysuban A, Sakayaroj J, Preedanon S, Ruang-Areerate P, Phongpaichit S, Pang KL, Jones EBG (2015) Tirisporellaceae, a new family in the order Diaporthales (Sordariomycetes, Ascomycota). Cryptogamie Mycol 36:319–330

    Article  Google Scholar 

  123. Taylor JW, Berbee ML (2006) Dating divergences in the fungal tree of life: review and new analyses. Mycologia 98:838–849

    PubMed  Article  Google Scholar 

  124. Taylor TN, Remy W, Hass H, Kerp H (1995) Fossil arbuscular mycorrhizae from the Early Devonian. Mycologia 87:560–573

    Article  Google Scholar 

  125. Tedersoo L, Bahram M, Puusepp R, Nilsson RH, James TY (2017) Novel soil-inhabiting clades fill gaps in the fungal tree of life. Microbiome 45:5–32

    Google Scholar 

  126. Thomas K (1996) Australian freshwater fungi. In: Grgurinovic CA (ed) Introductory volume to the fungi (Part 2). Fungi of Australia. . Australian Biological Resources Study, Canberra, pp 1–37

    Google Scholar 

  127. Torres MS, White JF, Bischoff JF (2007) Hypocrella panamensis sp. nov (Clavicipitaceae Hypocreales): evaluation on the basis of morphological and molecular characters. Mycol Res 111:317–323

    PubMed  Article  Google Scholar 

  128. Tsang CC, Chan JFW, Philip PCI, Ngan AHY, Chen JHK, Lau SKP, Woo PCY (2014) Subcutaneous phaeohyphomycotic nodule due to Phialemoniopsis hongkongensis sp. nov. J Clin Microbiol 52:3280–3289

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. Tsui CK, Baschien C, Goh TK (2016) Biology and ecology of freshwater fungi. Biology of microfungi. Springer, New York, pp 285–313

    Google Scholar 

  130. Tsui CKM, Hyde KD (2003) Freshwater mycology. Fungal Divers 10:1–350

    Google Scholar 

  131. Tubaki K (1975) Notes on the Japanese hyphomycetes VII. Cancellidium, a new hyphomycete genus. Trans. Mycol Soc Japan 16:357–360

    Google Scholar 

  132. Vijaykrishna D, Jeewon R, Hyde KD (2006) Molecular taxonomy, origins and evolution of freshwater ascomycetes. Fungal Divers 23:351–390

    Google Scholar 

  133. Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  134. Wang Z, Johnston PR, Yang ZL, Townsend JP (2009) Evolution of reproductive morphology in leaf endophytes. PLoS ONE 4:e4246

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  135. Webster J, Davey R (1980) Two aero-aquatic hyphomycetes from Malaysia. Trans Brit Mycol Soc 75:341–345

    Article  Google Scholar 

  136. Wheeler DL, Dung JK, Johnson DA (2019) From pathogen to endophyte: an endophytic population of Verticillium dahliae evolved from a sympatric pathogenic population. New Phytol 222:497–510

    PubMed  Article  Google Scholar 

  137. White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc Guide Methods Appl 18:315–322

    Google Scholar 

  138. Wignall PB, Twitchett RJ (1996) Oceanic anoxia and the end Permian mass extinction. Science 272:1155–1158

    CAS  PubMed  Article  Google Scholar 

  139. Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Rajeshkumar KC, Zhao RL, Aptroot A, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Lumbsch HT, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfliegler WP, Horváth E, Bensch K, Kirk PM, Kolaříková K, Raja HA, Radek R, Papp V, Dima B, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Réblová M, Doilom M, Dolatabadi S, Pawłowska J, Humber RA, Kodsueb R, Sánchez-Castro I, Goto BT, Silva DKA, de Souza FA, Oehl F, da Silva GA, Silva IR, Błaszkowski J, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Castañeda-Ruiz RF, Somrithipol S, Lateef AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kušan I, Matočec N, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustad VP, Lawrey JD, Santiago ALCMA, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vázquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Becerra AG, Kendrick B, Brearley FQ, Motiejūnaitė J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Stadler M, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdoğdu M, Yurkov A, Schnittler M, Shchepin ON, Novozhilov YK, Silva-Filho AGS, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Hawksworth DL, Fan XL, Dissanayake LS, Kuhnert E, Grossart HP, Thines M (2020) Outline of Fungi and fungus-like taxa. Mycosphere 11:1060–1456

    Article  Google Scholar 

  140. Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK, Maharachchikumbura SSN, Ekanayaka AH, Tian Q, Phookamsak R (2018) Outline of Ascomycota: 2017. Fungal Divers 88:167–263

    Article  Google Scholar 

  141. Wong KMK, Goh TK, Hodgkiss IJ, Hyde KD, Ranghoo VM, Tsui CMK, Ho WH, Wong WS, Yuen TC (1998) The role of fungi in freshwater ecosystems. Biodivers Conserv 7:1187–1206

    Article  Google Scholar 

  142. Wong MKM, Hyde KD (2001) Diversity of fungi on six grasses species of Gramineae and one species of Cyperaceae in Hong Kong. Mycol Res 105:1485–1491

    Article  Google Scholar 

  143. Woolhouse ME, Webster JP, Domingo E, Charlesworth B, Levin BR (2002) Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet 32:569–577

    CAS  PubMed  Article  Google Scholar 

  144. Xia JW, Ma YR, Li Z, Zhang XG (2017) Acrodictys-like wood decay fungi from southern China, with two new families Acrodictyaceae and Junewangiaceae. Sci Rep 7:7888

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  145. Yang J, Maharachchikumbura SSN, Hyde KD, Bhat DJ, McKenzie EHC, Bahkali AH, Jones EBG, Liu ZY (2015) Aquapteridospora lignicola gen. et sp. nov., a new hyphomycetous taxon (Sordariomycetes) from wood submerged in a freshwater stream. Cryptog Mycol 36:469–478

    Article  Google Scholar 

  146. Yang J, Maharachchikumbura SSN, Liu JK, Hyde KD, Jones EBG, Al-Sadi AM, Liu ZY (2018) Pseudostanjehughesia aquitropica gen. et sp. nov. and Sporidesmium sensu lato species from freshwater habitats. Mycol Prog 17:591–616

    Article  Google Scholar 

  147. Yeung QYY, Jeewon R, Hyde KD (2006) Cancellidium pinicola sp. nov. from Pinus massoniana and its phylogeny. Cryptogamie Mycol 27:295–304

    Google Scholar 

  148. Zare-Maivan H, Shearer CA (1988) Extracellular enzyme production and cell wall degradation by freshwater lignicolous fungi. Mycologia 80:365–375

    CAS  Article  Google Scholar 

  149. Zeilinger S, Gupta VK, Dahms TE, Silva RN, Singh HB, Upadhyay RS, Gomes EV, Tsui CK, Nayak SC (2016) Friends or foes? Emerging insights from fungal interactions with plants. FEMS microbiol Rev 40:182–207

    CAS  PubMed  Article  Google Scholar 

  150. Zelski SE, Balto JA, Do C, Raja HA, Miller AN, Shearer CA (2014) Phylogeny and morphology of dematiaceous freshwater microfungi from Perú. IMA Fungus 5:425–438

    PubMed  PubMed Central  Article  Google Scholar 

  151. Zhang H, Dong W, Hyde KD, Maharachchikumbura SSN, Hongsanan S, Bhat DJ, Al-Sadi AM, Zhang D (2017) Towards a natural classification of Annulatascaceae-like taxa: introducing Atractosporales ord. nov. and six new families. Fungal Divers 85:75–110

    Article  Google Scholar 

  152. Zhang SN, Hyde KD, Jones EBG, Jeewon R, Cheewangkoon R, Liu JK (2019) Striatiguttulaceae, a new pleosporalean family to accommodate Longicorpus and Striatiguttula gen. nov. from palms. MycoKeys 49:99–129

    PubMed  PubMed Central  Article  Google Scholar 

  153. Zhao GZ, Yu P, Liu XZ (2012) Cancellidium and Canalisporium (hyphomycetes) from China. Nova Hedwigia 96:221–236

    Article  Google Scholar 

Download references

Acknowledgments

K.D. Hyde thanks Chiang Mai University for the award of a Visiting Professor. K.D. Hyde also thanks the Thailand Research Fund for the grant RDG6130001MS, Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion. S. Honsanan would like to thank National Natural Science Foundation of China (Project ID: 31950410548). J. Yang would like to thank Prof. Zuoyi Liu for the financial support of the lab work in China. D.F. Bao would like to thank the National Natural Science Foundation of China (Project ID: 31660008 and 31860006), Fungal diversity conservation and utilization innovation team of Dali University (ZKLX2019213).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dan-Feng Bao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 27 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hyde, K.D., Bao, DF., Hongsanan, S. et al. Evolution of freshwater Diaporthomycetidae (Sordariomycetes) provides evidence for five new orders and six new families. Fungal Diversity (2021). https://doi.org/10.1007/s13225-021-00469-7

Download citation

Keywords

  • 14 new taxa
  • Evolution
  • Freshwater fungi
  • New family
  • New order