Skip to main content
Log in

Pseudomonas fluorescens: a potential food spoiler and challenges and advances in its detection

  • Review Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Purpose

This review focuses on the spoilage strategies used by the Pseudomonas fluorescens, and in addition, it also discusses various diagnostic approaches used for its identification in food items. Some challenges faced and advances in the detection of P. fluorescens and also discussed in this review.

Methods

An extensive literature search was performed with published work and data was analyzed in detail to meet the requirements of the objectives.

Results

P. fluorescens are unicellular rods, with long straight or curved axis, but not helical, motility by one or more polar flagella, Gram-negative, non-spores former, stalks, or sheaths. P. fluorescens is represented by seven biotypes denoted by the letters A, B, C, D, E, F, and G. The microbe shows wide choice of growth temperature and causes contamination and spoilage in ordinary and refrigerated food items by its enzymes and pigment production. The biofilm formation by P. fluorescens poses another serious threat to the food industries.

Conclusion

Molecular identification of P. fluorescens is generally done by 16S rRNA, intergenic spacer (ITS1) utilizing traditional polymerase chain reactions (PCR). Nowadays, qPCR and multiplex PCR are largely utilized in identification of P. fluorescens based on AprX gene (extracellular caseinolytic metalloprotease) in the milk and meat spoilage strains. The available methods still show some disadvantages with accuracy and specificity of detection. Rapid detection of P. fluorescens in food samples is the need of hour to improve the detection efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ait Tayeb L, Ageron E, Grimont F, Grimont PA (2005) Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates. Res Microbiol 156(5–6):763–773

    Article  CAS  PubMed  Google Scholar 

  • Al-Rodhan AM, Nasear HA (2016) PCR- based detection of Pseudomonas fluorescens in cow and buffaloes’ raw milk. Bas J Vet Res 15(1):194–208

    Google Scholar 

  • Andersson RE, Danielsson G, Hedlund CB, Svensson SG (1981) Effect of a heat-resistant microbial lipase on flavor of ultra-high-temperature sterilized milk. J Dairy Sci 64(3):375–379

    Article  CAS  Google Scholar 

  • Andreani N (2016) Into the blue: spoilage phenotypes of Pseudomonas fluorescens in food matrices (Doctoral dissertation, University of Padova) https://paduaresearch.cab.unipd.it/9109/1/Andreani_NadiaAndrea_tesi.pdf.pdf. Accessed 10 Dec 2018

  • Andreani NA, Martino ME, Fasolato L, Carraro L, Montemurro F, Mioni R, Bordin P, Cardazzo B (2014) Reprint of ‘tracking the blue: a MLST approach to characterise the Pseudomonas fluorescens group’. Food Microbiol 39:116–126

    Article  CAS  PubMed  Google Scholar 

  • Andreani NA, Carraro L, Martino ME, Fondi M, Fasolato L, Miotto G, Magro M, Vianello F, Cardazzo B (2015) A genomic and transcriptomic approach to investigate the blue pigment phenotype in Pseudomonas fluorescens. Int J Food Microbiol 213:88–98

    Article  CAS  PubMed  Google Scholar 

  • Andreani NA, Carraro L, Zhang L, Vos M, Cardazzo B (2019) Transposon mutagenesis in Pseudomonas fluorescens reveals genes involved in blue pigment production and antioxidant protection. Food Microbiol 82(9):497–503

    Article  CAS  PubMed  Google Scholar 

  • Ardura A, Linde AR, Garcia-Vazquez E (2013) Genetic detection of Pseudomonas spp. in commercial Amazonian fish. Int J Environ Res Public Health 10(9):3954–3966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aswathanarayan JB, Vittal RR (2014) Attachment and biofilm formation of Pseudomonas fluorescens PSD4 isolated from a dairy processing line. Food Sci Biotechnol 23(6):1903–1910

    Article  CAS  Google Scholar 

  • Bai AJ, Rai VR (2011) Bacterial quorum sensing and food industry. Compr Rev Food Sci Food Saf 10(3):183–193

    Article  CAS  Google Scholar 

  • Bedeltavana A, Haghkhah M, Nazer A (2010) Phenotypic characterization and PCR-ribotyping of Pseudomonas fluorescens isolates, in tracking contamination routes in the production line of pasteurized milk. Iran J Vet Res 11(3):222–232

    Google Scholar 

  • Brocklehurst TF, Lund BM (1981) Properties of pseudomonads causing spoilage of vegetables stored at low temperature. J Appl Bacteriol 50(2):259–266

    Article  Google Scholar 

  • Caldera L, Franzetti L (2014) Effect of storage temperature on the microbial composition of ready-to-use vegetables. Curr Microbiol 68(2):133–139

    Article  CAS  PubMed  Google Scholar 

  • Caputo L, Quintieri L, Bianchi DM, Decastelli L, Monaci L, Visconti A, Baruzzi F (2015) Pepsin-digested bovine lactoferrin prevents mozzarella cheese blue discoloration caused by Pseudomonas fluorescens. Food Microbiol 46:15–24

    Article  CAS  PubMed  Google Scholar 

  • Chan WKM, Joo S-T, Faustman C, Sun Q, Vieth R (1998) Effect of Pseudomonas fluorescens on beef discoloration and oxymyoglobin in vitro. J Food Prot 61(10):1341–1346

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Wang F, Beaulieu JC, Stein RE, Ge B (2011) Rapid detection of viable Salmonellae in produce by coupling propidium monoazide with loop-mediated isothermal amplification. Appl Environ Microbiol 77(12):4008–4016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiang YC, Tsen HY, Chen HY, Chang YH, Lin CK, Chen CY, Pai WY (2012) Multiplex PCR and a chromogenic DNA macroarray for the detection of Listeria monocytogens, Staphylococcus aureus, Streptococcus agalactiae, Enterobacter sakazakii, Escherichia coli O157: H7, Vibrio parahaemolyticus, Salmonella spp and Pseudomonas fluorescens in milk and meat samples. J Microbiol Methods 88(1):110–116

    Article  CAS  PubMed  Google Scholar 

  • Costerton JW (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322

    Article  CAS  Google Scholar 

  • Datta N, Deeth HC (2001) Age gelation of UHT milk-a review. Food Bioprod Process 79(4):197–210

    Article  Google Scholar 

  • De las Rivas B, Marcobal Á, Muñoz R (2005) Improved multiplex-PCR method for the simultaneous detection of food bacteria producing biogenic amines. FEMS Microbiol Lett 244(2):367–372

    Article  CAS  PubMed  Google Scholar 

  • De las Rivas B, Marcobal A, Carrascosa AV, Munoz R (2006) PCR detection of foodborne bacteria producing the biogenic amines histamine, tyramine, putrescine, and cadaverine. J Food Prot 69(10):2509–2514

    Article  CAS  PubMed  Google Scholar 

  • Decimo M, Morandi S, Silvetti T, Brasca M (2014) Characterization of gram-negative psychrotrophic bacteria isolated from Italian bulk tank milk. J Food Sci 79(10):M2081–M2090

    Article  CAS  PubMed  Google Scholar 

  • Dieckelmann M, Johnson LA, Beacham IR (1998) The diversity of lipases from psychrotrophic strains of Pseudomonas: a novel lipase from a highly lipolytic strain of Pseudomonas fluorescens. J Appl Microbiol 85(3):527–536

    Article  CAS  PubMed  Google Scholar 

  • Dogan B, Boor KJ (2003) Genetic diversity and spoilage potentials among Pseudomonas spp. isolated from fluid milk products and dairy processing plants. Appl Environ Microbiol 69(1):130–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dufour D, Nicodème M, Perrin C, Driou A, Brusseaux E, Humbert G, Gaillard JL, Dary A (2008) Molecular typing of industrial strains of Pseudomonas spp. isolated from milk and genetical and biochemical characterization of an extracellular protease produced by one of them. Int J Food Microbiol 125(2):188–196

    Article  CAS  PubMed  Google Scholar 

  • Edwards RA, Dainty RH, Hibbard CM (1987) Volatile compounds produced by meat pseudomonads and related reference strains during growth on beef stored in air at chill temperatures. J Appl Bacteriol 62(5):403–412

    Article  CAS  PubMed  Google Scholar 

  • Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, Sogin ML (2013) Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 4(12):1111–1119

    Article  PubMed Central  Google Scholar 

  • Eren AM, Borisy GG, Huse SM, Mark Welch JL (2014) Oligotyping analysis of the human oral microbiome. Proc Natl Acad Sci U S A 111(28):E2875–E2884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML (2015) Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J 9(4):968–979

    Article  CAS  PubMed  Google Scholar 

  • Eriksson PV, Di-Paola GN, Pasetti MF, Manghi MA (1995) Inhibition enzyme-linked immunosorbent assay for detection of Pseudomonas fluorescens on meat surfaces. Appl Environ Microbiol 61(1):397–398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fasolato L, Andreani NA, De-Nardi R, Nalotto G, Serva L, Cardazzo B, Balzan S, Carraro L, Fontana F, Novelli E (2018) Spectrophotometric techniques for the characterization of strains involved in the blue pigmentation of food: preliminary results. Ital J Food Saf 7(1):6928

    PubMed  PubMed Central  Google Scholar 

  • Folsom D, Friedman BA (1959) Pseudomonas fluorescens in relation to certain diseases of potato tubers in Maine. Am Potato J 36(3):90–97

    Article  Google Scholar 

  • Fox CW, Chrisope GL, Marshall RT (1976) Incidence and identification of phospholipase C-producing bacteria in fresh and spoiled homogenized milk. J Dairy Sci 59(11):1857–1864

    Article  CAS  PubMed  Google Scholar 

  • Franzetti L, Scarpellini M (2007) Characterisation of Pseudomonas spp. isolated from foods. Ann Microbio 57(1):39–47

    Article  CAS  Google Scholar 

  • Freeman LR, Silverman GJ, Angelini P, Merrit C Jr, Esselen WB (1976) Volatilesproduced by microorganismsisolated from refrigeratedchicken at spoilage. Appl Environ Microbiol 32(2):222–231

    CAS  PubMed  PubMed Central  Google Scholar 

  • González I, Martín R, García T, Morales P, Sanz B, Hernandez PE (1996) Polyclonal antibodies against protein F from the cell envelope of Pseudomonas fluorescens for the detection of psychrotrophic bacteria in refrigerated meat using an indirect ELISA. Meat Sci 42(3):305–313

    Article  PubMed  Google Scholar 

  • Griffiths MW, Phillips JD, West IG, Muir DD (1988) The effect of extended low-temperature storage of raw milk on the quality of pasteurized and UHT milk. Food Microbiol 5(2):75–87

    Article  Google Scholar 

  • Gupta S, Kaushal A, Kumar A, Kumar D (2017) Ultrasensitive transglutaminase based nanosensor for early detection of celiac disease in human. Int J Biol Macromol 5(1):905–911

    Article  CAS  Google Scholar 

  • Gutierrez R, Gonzalez I, Garcia T, Carrera E, Sanz B, Hernandez PE, Marti R (1997) Monoclonal antibodies and an indirect ELISA for detection of psychrotrophic bacteria in refrigerated milk. J Food Prot 60(1):23–27

    Article  CAS  PubMed  Google Scholar 

  • Hammad AM (2015) Spoilage potential of Pseudomonas spp. isolated form domiati cheese. Assiut Vet Med J 61:18–23

    Google Scholar 

  • Hildebrand PD (1989) Surfactant-like characteristics and identity of bacteria associated with broccoli head rot in Atlantic Canada. Can J Plant Pathol 11(3):205–214

    Article  Google Scholar 

  • Huether JP, McIntyre GA (1969) Pectic enzyme production by two strains of Pseudomonas fluorescens associated with the pinkeye disease of potato tubers. Am Potato J 46(11):414–423

    Article  Google Scholar 

  • Huis JHJ (1996) Microbial and biochemical spoilage of foods: an overview. Int J Food Microbiol 33(1):1–18

    Article  Google Scholar 

  • Jiang Y, Gao F, Xu XL, Ye KP, Zhou GH (2011) Changes in the composition of the bacterial flora on tray-packaged pork during chilled storage analyzed by PCR-DGGE and real-time PCR. J Food Sci 7(1):M27–M29

    Article  CAS  Google Scholar 

  • Kersters K, Ludwig W, Vancanneyt M, De-Vos PD, Gillis M, Schleifer KH (1996) Recent changes in the classification of the pseudomonads: an overview. Syst Appl Microbiol 19(4):465–477

    Article  Google Scholar 

  • Keskin D, Ekmekçi S (2007) Investigation of the incidence of Pseudomonas sp. in foods. Hacet J Biol Chem 35(3):181–186

    Google Scholar 

  • Koeppel AF, Wu M (2013) Surprisingly extensive mixed phylogenetic and ecological signals among bacterial operational taxonomic units. Nucleic Acids Res 41(10):5175–5188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koka R, Weimer BC (2000) Isolation and characterization of protease from Pseudomonas fluorescens RO98. J Appl Microbiol 89(2):280–288

    Article  CAS  PubMed  Google Scholar 

  • Ksontini H, Kachouri F, Hamdi M (2013) Dairy biofilm: impact of microbial community on raw milk quality. J Food Qual 36(4):282–290

    Article  Google Scholar 

  • Law BA, Sharpe ME, Chapman HR (1976) The effect of lipolytic gram-negative psychrotrophs in stored milk on the development of rancidity in Cheddar cheese. J Dairy Res 43(3):459–468

    Article  CAS  Google Scholar 

  • Law BA, Andrews AT, Sharpe ME (1977) Gelation of ultra- high-temperature- sterilized milk by proteases from a strain of Pseudomonas fluorescens isolated from raw milk. J Dairy Res 44(1):145–148

    Article  CAS  Google Scholar 

  • Liao CH (1989) Analysis of pectate lyases produced by soft rot bacteria associated with spoilage of vegetables. Appl Environ Microbiol 55(7):1677–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao CH, McCallus DE (1998) Biochemical and genetic characterization of an extracellular protease from Pseudomonas fluorescens CY091. Appl Environ Microbiol 64(3):914–921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liao CH, Sullivan J, Grady J, Wong LJ (1997) Biochemical characterization of pectate lyases produced by fluorescent pseudomonads associated with spoilage of fresh fruits and vegetables. J Appl Microbiol 83(1):10–16

    Article  CAS  Google Scholar 

  • Liu M, Wang H, Griffiths MW (2007) Regulation of alkaline metalloprotease promoter by N-acyl homoserine lactone quorum sensing in Pseudomonas fluorescens. J Appl Microbiol 103(6):2174–2184

    Article  CAS  PubMed  Google Scholar 

  • Machado SG, da Silva FL, Bazzolli DM, Heyndrickx M, Costa PM, Vanetti MC (2015) Pseudomonas spp. and Serratia liquefaciens as predominant spoilers in cold raw milk. J Food Sci 80(8):M1842–M1849

    Article  CAS  PubMed  Google Scholar 

  • Magnuson JA, King AD, Török T (1990) Microflora of partially processed lettuce. Appl Environ Microbiol 56(12):3851–3854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marchand S, Vandriesche G, Coorevits A, Coudijzer K, Jonghe VD, Dewettinck K, Vos PD, Devreese B, Heyndricks M, Block JD (2009) Heterogeneity of heat-resistant proteases from milk Pseudomonas species. Int J Food Microbiol 133(1–2):68–77

    Article  CAS  PubMed  Google Scholar 

  • Marshall B, Robleto EA, Wetzler R, Kulle P, Casaz P, Levy SB (2001) The adnA transcriptional factor affects Pf0-1 motility and biofilms-formation. Appl Environ Microbiol 77(12):4318–4329

    Google Scholar 

  • Márta D (2012) Molecular monitoring of meat spoiling Pseudomonas species analysis of Staphylococcal enterotoxin expression and formation(Doctoral dissertation, Budapesti CorvinusEgyetem). https://pdfs.semanticscholar.org/c655/56eac5d83c36a50f2895876c31bd440c4b85.pdf. Accessed 14 Nov 2018

  • Martin NH, Murphy SC, Ralyea RD, Wiedmann M, Boor KJ (2011) When cheese gets the blues: Pseudomonas fluorescens as the causative agent of cheese spoilage. J Dairy Sci 94(6):3176–3183

    Article  CAS  PubMed  Google Scholar 

  • Martins ML, Araju EFD, Mantovani HC, Moraes CA, Vanetti MCD (2005) Detection of apr gene in proteolytic psychrotrophic bacteria isolated from refrigerated milk. Int J Food Microbiol 102(2):203–211

    Article  CAS  PubMed  Google Scholar 

  • Martins ML, Pinto UM, Riedel K, Vanetti MC (2015) Milk-deteriorating exoenzymes from Pseudomonas fluorescens 041 isolated from refrigerated raw milk. Braz J Microbiol 46(1):207–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCarthy CN, Woods RG, Beacham IR (2004) Regulation of the aprX–lipA operon of Pseudomonas fluorescens B52: differential regulation of the proximal and distal genes, encoding protease and lipase, by ompR–envZ. FEMS Microbiol Lett 241(2):243–248

    Article  CAS  PubMed  Google Scholar 

  • Mellor GE, Bentley JA, Dykes GA (2011) Evidence for a role of biosurfactants produced by Pseudomonas fluorescens in the spoilage of fresh aerobically stored chicken meat. Food Microbiol 28(5):1101–1104

    Article  CAS  PubMed  Google Scholar 

  • Miller A, Scanlan RA, Lee JS, Libbey LM (1973) Volatile compounds produced in sterile fish muscle (Sebastes melanops) by Pseudomonas putrefaciens, Pseudomonas fluorescens, and an Achromobacter species. Appl Microbiol 26(1):18–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell SL, Marshall RT (1989) Properties of heat-stable proteases of Pseudomonas fluorescens: characterization and hydrolysis of milk proteins. J Dairy Sci 72(4):864–874

    Article  CAS  Google Scholar 

  • Mlipano CL, Alistair G, Michael L (2018) Detection of proteolysis in milk by Pseudomonas fluorescens using urea PAGE method. J Food Stud 7(1):14–25

    Article  Google Scholar 

  • Morales PA, Aguirre JS, Troncoso MR, Figueroa GO (2016) Phenotypic and genotypic characterization of Pseudomonas spp. present in spoiled poultry fillets sold in retail settings. LWT Food Sci Technol 73:609–614

    Article  CAS  Google Scholar 

  • Palleroni NJ (1993) Pseudomonas classification. Antonie Van Leeuwenhoek 64(3–4):231–251

    PubMed  Google Scholar 

  • Palleroni NJ (2010) The Pseudomonas story. Environ Microbiol 12(6):1377–1383

    Article  CAS  PubMed  Google Scholar 

  • Palleroni NJ, Ballard RW, Ralston E, Doudoroff M (1972) Deoxyribonucleic acid homologies among some Pseudomonas species. J Bacteriol 110(1):1–11

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palleroni NJ, Kunisawa R, Contopoulou R, Doudoroff M (1973) Nucleic acid homologies in the genus Pseudomonas. Int J Syst Bacteriol 23(4):333–339

    Article  CAS  Google Scholar 

  • Parlapani FF, Kormas KAR, Boziaris IS (2015) Microbiological changes, shelf life and identification of initial and spoilage microbiota of sea bream fillets stored under various conditions using 16S rRNA gene analysis. J Sci Food Agric 95(12):2386–2394

    Article  CAS  PubMed  Google Scholar 

  • Pinto UM, Costa ED, Mantovani HC, Vanetti MCD (2010) The proteolytic activity of Pseudomonas fluorescens 07A isolated from milk is not regulated by quorum sensing signals. Braz J Microbiol 41(1):91–96

    Article  PubMed  PubMed Central  Google Scholar 

  • Pittard BT, Freeman LR, Later DW, Lee ML (1982) Identification of volatile organic compounds produced by fluorescent pseudomonads on chicken breast muscle. Appl Environ Microbiol 43(6):1504–1506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajmohan S, Dodd CER, Waites WM (2002) Enzymes from isolates of Pseudomonas fluorescens involved in food spoilage. J Appl Microbiol 93(2):205–213

    Article  CAS  PubMed  Google Scholar 

  • RASFF (2010) Available at https://ec.europa.eu/food/sites/food/files/safety/docs/rasff_annual_report_2010_en.pdf. Accessed 10 Oct 2018

  • Reichler SJ, Trmčič A, Martin NH, Boor KJ, Wiedmann M (2018) Pseudomonas fluorescens group bacterial strains are responsible for repeat and sporadic postpasteurization contamination and reduced fluid milk shelf life. J Dairy Sci 101(9):7780–7800

    Article  CAS  PubMed  Google Scholar 

  • Rossi C, Chaves-Lopez C, Serio A, Goffredo E, Goga BTC, Paparella A (2016) Influence of incubation conditions on biofilm formation by Pseudomonas fluorescens isolated from dairy products and diary manufacturing plants. Ital J Food Saf 5(3):154–157

    Google Scholar 

  • Saha R, Bestervelt LL, Donofrio RS (2012) Development and validation of a real-time TaqMan assay for the detection and enumeration of Pseudomonas fluorescens ATCC 13525 used as a challenge organism in testing of food equipments. J Food Sci 77(2):M150–M155

    Article  CAS  PubMed  Google Scholar 

  • Samaržija D, Zamberlin Š, Pogačić T (2012) Psychrotrophic bacteria and milk and dairy products quality. Mljekarstvo 62(2):77–95

    Google Scholar 

  • Scarpellini M, Franzetti L, Antonietta G (2004) Development of PCR assay to identify Pseudomonas fluorescens and its biotype. FEMS Microbiol Lett 236(2):257–260

    Article  CAS  PubMed  Google Scholar 

  • Scatamburlo TM, Yamazi AK, Cavicchioli VQ, Pieri FA, Nero LA (2015) Spoilage potential of Pseudomonas species isolated from goat milk. J Dairy Sci 98(2):759–764

    Article  CAS  PubMed  Google Scholar 

  • Schlemmer AF, Ware CF, Keen NT (1987) Purification and characterization of a pectin lyase produced by Pseudomonas fluorescens W51. J Bacteriol 169(10):4493–4498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmidt VT, Reveillaud J, Zettler E, Mincer TJ, Murphy L, Amaral-Zettler LA (2014) Oligotyping reveals community level habitat selection within the genus Vibrio. Front Microbiol 5:563

    PubMed  PubMed Central  Google Scholar 

  • Sellwood JE, Ewart JM, Buckler E (1981) Vascular blackening of chicory caused by a pectolytic isolate of Pseudomonas fluorescens. Plant Pathol 30(3):179–180

    Article  Google Scholar 

  • Shpigel NY, Pasternak Z, Factor G, Gottlieb Y (2015) Diversity of bacterial biofilm communities on sprinklers from dairy farm cooling systems in Israel. PLoS One 10(9):e0139111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stanier RY, Palleroni NJ, Doudoroff M (1966) The aerobic pseudomonads a taxonomic study. Microbiol 43(2):159–271

    CAS  Google Scholar 

  • Stellato G, Utter DR, Voorhis A, De Angelis M, Eren AM, Ercolini D (2017) A few Pseudomonas oligotypes dominate in the meat and dairy processing environment. Front Microbiol 8:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Stoeckel M, Lidolt M, Achberger V, Glück C, Krewinkel M, Stressler T, Von-Neubeck M, Wenning M, Scherer S, Fischer L, Hinrichs J (2016) Growth of Pseudomonas weihenstephanensis, Pseudomonas proteolytica and Pseudomonas sp. in raw milk: impact of residual heat-stable enzyme activity on stability of UHT milk during shelf-life. Int Dairy J 59:20–28

    Article  CAS  Google Scholar 

  • Stoops J, Maes P, Claes J, Van Campenhout L (2012) Growth of Pseudomonas fluorescens in modified atmosphere packaged tofu. Lett Appl Microbiol 54(3):195–202

    Article  CAS  PubMed  Google Scholar 

  • Teh KH, Flint S, Palmer J, Andrewes P, Bremer P, Lindsay D (2014) Biofilm-an unrecognised source of spoilage enzymes in dairy products? Int Dairy J 34(1):32–40

    Article  CAS  Google Scholar 

  • Tryfinopoulou P, Tsakalidou E, Nychas GJ (2002) Characterization of Pseudomonas spp. associated with spoilage of gilt-head sea bream stored under various conditions. Appl Environ Microbiol 68(1):65–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vithanage NR, Dissanayake M, Bolge G, Palombo EA, Yeager TR, Datta N (2016) Biodiversity of culturable psychrotrophic microbiota in raw milk attributable to refrigeration conditions, seasonality and their spoilage potential. Int Dairy J 57:80–90

    Article  CAS  Google Scholar 

  • Von-Neubeck M, Baur C, Krewinkel M, Stoeckel M, Kranz B, Stressler T, Fischer L, Hinrichs J, Scherer S, Wenning M (2015) Biodiversity of refrigerated raw milk microbiota and their enzymatic spoilage potential. Int J Food Microbiol 211:57–65

    Article  CAS  PubMed  Google Scholar 

  • Wan C, Yang Y, Xu H, Aguilar ZP, Liu C, Lai W, Xiong Y, Xu F, Wei H (2012) Development of a propidium monoazide treatment combined with loop-mediated isothermal amplification (PMA-LAMP) assay for rapid detection of viable Listeria monocytogenes. Int J Food Microbiol 47(11):2460–2467

    CAS  Google Scholar 

  • Woods RG, Burger M, Beven CA, Beacham IR (2001) The aprX–lipA operon of Pseudomonas fluorescens B52: a molecular analysis of metalloprotease and lipase production. Microbiol 147(2):345–354

    Article  CAS  Google Scholar 

  • Xin L, Zhang L, Meng Z, Lin K, Zhang S, Han X, Yi HX, Cui Y (2017) Development of a novel loop-mediated isothermal amplification assay for the detection of lipolytic Pseudomonas fluorescens in raw cow milk from North China. J Dairy Sci 100(10):7802–7811

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Chen W, You C, Liu Z (2017) Development of a multiplex PCR assay for detection of Pseudomonas fluorescens with biofilm formation ability. J Food Sci 80(10):2337–2342

    Article  CAS  Google Scholar 

  • Yilmaz AG, Temiz HT, Soykut EA, Halkman K, Boyaci IH (2015) Rapid identification of Pseudomonas aeruginosa and Pseudomonas fluorescnes using Raman spectroscopy. J Food Saf 35(4):501–508

    Article  Google Scholar 

  • Zhang S, Lv J (2014) Purification and properties of heat-stable extracellular protease from Pseudomonads fluorescens BJ-10. J Food Sci Technol 51(6):1185–1190

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar.

Ethics declarations

Ethical approval

No studies with humans/animals have been performed by any of the authors for the purpose of this review article.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was taken from all the authors.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, H., Franzetti, L., Kaushal, A. et al. Pseudomonas fluorescens: a potential food spoiler and challenges and advances in its detection. Ann Microbiol 69, 873–883 (2019). https://doi.org/10.1007/s13213-019-01501-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-019-01501-7

Keywords

Navigation