Skip to main content
Log in

Deciphering the mode of action, structural and biochemical analysis of heparinase II/III (PsPL12a) a new member of family 12 polysaccharide lyase from Pseudopedobacter saltans

  • Original Article
  • Published:
Annals of Microbiology Aims and scope Submit manuscript

Abstract

Heparinases are widely used for production of clinically and therapeutically important bioactive oligosaccharides and in analyzing the polydisperse, heterogeneous, and complex structures of heparin/heparan sulfate. In the present study, the gene (1911 bp) encoding heparinase II/III of family 12 polysaccharide lyase (PsPL12a) from Pseudopedobacter saltans was cloned, expressed, and biochemically and functionally characterized. The purified enzyme PsPL12a of molecular size approximately 76 kDa exhibited maximum activity in the temperature range 45–50 °C and at pH 6.0. PsPL12a gave maximum activity at 1% (w/v) heparin under optimum conditions. The kinetic parameters, K m and Vmax, for PsPL12a were 4.6 ± 0.5 mg/ml and 70 ± 2 U/mg, respectively. Ten millimolars of each Mg2+ and Mn2+ ions enhanced PsPL12a activity by 80%, whereas Ni2+ inhibited by 75% and Co2+ by 10%, and EDTA completely inactivated the enzyme. Protein melting curve of PsPL12a gave a single peak at 55 °C and 10 mM Mg2+ ions and shifted the peak to 60 °C. The secondary structure analysis of PsPL12a by CD showed 65.12% α-helix, 11.84% β-strand, and 23.04% random coil. The degradation products of heparin by PsPL12a analyzed by ESI-MS spectra displayed peaks corresponding to heparin di-, tetra-, penta-, and hexa-saccharides revealing the endolytic mode of enzyme action. Heparinase II/III (PsPL12a) from P. saltans can be used for production of low molecular weight heparin oligosaccharides for their utilization as anticoagulants. This is the first report on heparinase cloned from P. saltans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amin K (2012) The role of mast cells in allergic inflammation. Respir Med 106(1):9–14

    Article  PubMed  Google Scholar 

  • Bellamy RW, Horikoshi K (1992) U.S. patent no. 5,145,778. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  • Böhmer LH, Pitout MJ, Steyn PL, Visser L (1990) Purification and characterization of a novel heparinase. J Biol Chem 265(23):13609–13617

    PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    Article  PubMed  CAS  Google Scholar 

  • Cao J, Lai Q, Li G, Shao Z (2014) Pseudopedobacter beijingensis gen. nov., sp. nov., isolated from coking wastewater activated sludge, and reclassification of Pedobacter saltans as Pseudopedobacter saltans comb. nov. Int J Syst Evol Microbiol 64(6):1853–1858

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Maguire T, Hileman RE, Fromm JR, Esko JD, Linhardt RJ, Marks RM (1997) Dengue virus infectivity depends on envelope protein binding to target cell heparan sulfate. Nat Med 3(8):866–871

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Ye F, Chen Y, Chen Y, Zhao H, Yatsunami R, Nakamura S, Arisaka F, Xing XH (2011) Biochemical analysis and kinetic modeling of the thermal inactivation of MBP-fused heparinase I: implications for a comprehensive thermostabilization strategy. Biotechnol Bioeng 108(8):1841–1851

    Article  PubMed  CAS  Google Scholar 

  • Davies G, Henrissat B (1995) Structures and mechanisms of glycosyl hydrolases. Structure 3(9):853–859

    Article  PubMed  CAS  Google Scholar 

  • Desai UR, Wang HM, Linhardt RJ (1993) Specificity studies on the heparin lyases from Flavobacterium heparinum. Biochemistry 32(32):8140–8145

    Article  PubMed  CAS  Google Scholar 

  • Doneanu CE, Chen W, Gebler JC (2009) Analysis of oligosaccharides derived from heparin by ion-pair reversed-phase chromatography/mass spectrometry. Anal Chem 81(9):3485–3499

    Article  PubMed  CAS  Google Scholar 

  • Dreyfuss JL, Regatieri CV, Jarrouge TR, Cavalheiro RP, Sampaio LO, Nader HB (2009) Heparan sulfate proteoglycans: structure, protein interactions and cell signaling. An Acad Bras Cienc 81(3):409–429

    Article  PubMed  CAS  Google Scholar 

  • Ernst S, Langer R, Cooney CL, Sasisekharan R (1995) Enzymatic degradation of glycosaminogIycans. Crit Rev Biochem Mol Biol 30(5):387–444

    Article  PubMed  CAS  Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71(1):435–471

    Article  PubMed  CAS  Google Scholar 

  • Gallagher JT, Turnbull JE (1992) Heparan sulphate in the binding and activation of basic fibroblast growth factor. Glycobiology 2(6):523–528

    Article  PubMed  CAS  Google Scholar 

  • Garron ML, Cygler M (2010) Structural and mechanistic classification of uronic acid-containing polysaccharide lyases. Glycobiology 20(12):1547–1573

    Article  PubMed  CAS  Google Scholar 

  • Gasimli L, Robert JL, Dordick JS (2012) Proteoglycans in stem cells. Biotechnol Appl Biochem 59(2):65–76

    Article  PubMed  CAS  Google Scholar 

  • Gray E, Hogwood J, Mulloy B (2012) The anticoagulant and antithrombotic mechanisms of heparin. In: Heparin-A century of Progress. Springer, Berlin Heidelberg, pp 43–61

    Chapter  Google Scholar 

  • Hovingh P, Linker A (1970) The enzymatic degradation of heparin and heparitin sulfate III. Purification of a heparitinase and a heparinase from flavobacteria. J Biol Chem 245(22):6170–6175

    PubMed  CAS  Google Scholar 

  • Hulett MD, Hornby JR, Ohms SJ, Zuegg J, Freeman C, Gready JE, Parish CR (2000) Identification of active-site residues of the pro-metastatic endoglycosidase heparanase. Biochemistry 39(51):15659–15667

    Article  PubMed  CAS  Google Scholar 

  • Hyun YJ, Lee JH, Kim DH (2010) Cloning, overexpression, and characterization of recombinant heparinase III from Bacteroides stercoris HJ-15. Appl Microbiol Biotechnol 86(3):879–890

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  PubMed  CAS  Google Scholar 

  • Limtiaco JF, Beni S, Jones CJ, Langeslay DJ, Larive CK (2011) NMR methods to monitor the enzymatic depolymerization of heparin. Anal Bioanal Chem 399(2):593–603

    Article  PubMed  CAS  Google Scholar 

  • Lindahl U, Lidholt K, Spillmann D, Kjellén L (1994) More to “heparin” than anticoagulation. Thromb Res 75(1):1–32

    Article  PubMed  CAS  Google Scholar 

  • Linhardt RJ, Fitzgerald GL, Cooney CL, Langer R (1982) Mode of action of heparin lyase on heparin. Biochim Biophys Acta Protein Struct Mol Enzymol 702(2):197–203

    Article  CAS  Google Scholar 

  • Linhardt RJ, Turnbull JE, Wang HM, Loganathan D, Gallagher JT (1990) Examination of the substrate specificity of heparin and heparan sulfate lyases. Biochemistry 29(10):2611–2617

    Article  PubMed  CAS  Google Scholar 

  • Lohse DL, Linhardt RJ (1992) Purification and characterization of heparin lyases from Flavobacterium heparinum. J Biol Chem 267(34):24347–24355

    PubMed  CAS  Google Scholar 

  • Lundin L, Larsson H, Kreuger J, Kanda S, Lindahl U, Salmivirta M, Claesson-Welsh L (2000) Selectively desulfated heparin inhibits fibroblast growth factor-induced mitogenicity and angiogenesis. J Biol Chem 275(32):24653–24660

    Article  PubMed  CAS  Google Scholar 

  • Nader HB, Porcionatto MA, Tersariol IL, Pinhal MA, Oliveira FW, Moraes CT, Dietrich CP (1990) Purification and substrate specificity of heparitinase I and heparitinase II from Flavobacterium heparinum. Analyses of the heparin and heparan sulfate degradation products by 13C NMR spectroscopy. J Biol Chem 265(28):16807–16813

    PubMed  CAS  Google Scholar 

  • Olsson P, Sanchez J, Mollnes TE, Riesenfeld J (2000) On the blood compatibility of end-point immobilized heparin. J Biomater Sci Polym Ed 11(11):1261–1273

    Article  PubMed  CAS  Google Scholar 

  • Rabenstein DL (2002) Heparin and heparan sulfate: structure and function. Nat Prod Rep 19(3):312–331

    Article  PubMed  CAS  Google Scholar 

  • Saad OM, Ebel H, Uchimura K, Rosen SD, Bertozzi CR, Leary JA (2005) Compositional profiling of heparin/heparan sulfate using mass spectrometry: assay for specificity of a novel extracellular human endosulfatase. Glycobiology 15(8):818–826

    Article  PubMed  CAS  Google Scholar 

  • Sampaio LO, Tersariol IL, Lopes CC, Bouças RI, Nascimento FD, Rocha HA, Nader HB (2006) Heparins and heparans sulfates. Structure, distribution and protein interactions. Insights into Carbohydrate Structure and Bological Function, 1–24

  • Sarrazin S, Lamanna WC, Esko JD (2011) Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3(7):a004952

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shively JE, Conrad HE (1976) Formation of anhydrosugars in the chemical depolymerization of heparin. Biochemistry 15(18):3932–3942

    Article  PubMed  CAS  Google Scholar 

  • Shriver Z, Capila I, Venkataraman G, Sasisekharan R (2012) Heparin and heparan sulfate: analyzing structure and microheterogeneity. Heparin-A Century of Progress. Springer Berlin Heidelberg. 159–176

  • Steyn PL, Segers P, Vancanneyt M, Sandra P, Kersters K, Joubert JJ (1998) Classification of heparinolytic bacteria into a new genus, Pedobacter, comprising four species: Pedobacter heparinus comb. nov., Pedobacter piscium comb. nov., Pedobacter africanus sp. nov. and Pedobacter saltans sp. nov. proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Evol Microbiol 48(1):165–177

    CAS  Google Scholar 

  • Thanawiroon C, Rice KG, Toida T, Linhardt RJ (2004) Liquid chromatography/mass spectrometry sequencing approach for highly sulfated heparin-derived oligosaccharides. J Biol Chem 279(4):2608–2615

    Article  PubMed  CAS  Google Scholar 

  • Toyoshima M, Nakajima M (1999) Human heparanase purification, characterization, cloning, and expression. J Biol Chem 274(34):24153–24160

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Zhao W, Yang B, Zhang Z, Guan H, Linhardt RJ (2010) Heparinase 1 selectivity for the 3, 6-di-O-sulfo-2-deoxy-2-sulfamido-α-D-glucopyranose (1, 4) 2-O-sulfo-α-L-idopyranosyluronic acid (GlcNS3S6S-IdoA2S) linkages. Glycobiology 21(1):13–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamada S, Sugahara K (2003) Preparation of oligosaccharides from sulfated glycosaminoglycans using bacterial enzymes. In: Capillary electrophoresis of carbohydrates, pp 71–78

    Chapter  Google Scholar 

  • Yates EA, Rudd TR (2016) Recent innovations in the structural analysis of heparin. Int J Cardiol 212:S5–S9

    Article  PubMed  Google Scholar 

  • Yoshida E, Sakai K, Tokuyama S, Miyazono H, Maruyama H, Morikawa K, Tahara Y (2002) Purification and characterization of heparinase that degrades both heparin and heparan sulfate from Bacillus circulans. Biosci Biotechnol Biochem 66(5):1181–1184

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank DBT Program Support, IIT Guwahati, for CD analysis and Central Instrumentation Facility for ESI-mass analysis. Fellowship provided by the Ministry of Human Resource Development, Govt. of India, to Karthika B. is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Goyal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramaniam, K., Sharma, K., Rani, A. et al. Deciphering the mode of action, structural and biochemical analysis of heparinase II/III (PsPL12a) a new member of family 12 polysaccharide lyase from Pseudopedobacter saltans. Ann Microbiol 68, 409–418 (2018). https://doi.org/10.1007/s13213-018-1347-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13213-018-1347-x

Keywords

Navigation