Biosensing Technologies for Chronic Diseases

Abstract

Chronic diseases represent a pressing global concern and are strongly related to the modern lifestyle. Thus, maintaining chronic disease in daily life is important. Advances in the development of chronic disease biosensors could help people to diagnose diseases earlier and tightly care at home or a body site. This review covers the efforts in the field of biosensor development for two crucial chronic diseases: cardiovascular disease (CVD) and Type 2 diabetes (T2D). Concerning the CVD diagnosis, the review presents major CVD biomarkers, troponin T, troponin I, myoglobin, and creatine kinase myocardial band subform, and discusses their current status. Concerning the T2D biosensors, the review emphasizes the importance of effective CGM biosensors in preventing diabetic complications. By engaging with other vital-signal sensors, the technology could be extended to an integrated platform for personal healthcare.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    World Health Organization. Chronic diseases and health promotion (2010)

  2. 2.

    World Health Organization. Cardiovascular diseases (CVDs) fact sheet (2017)

  3. 3.

    Dall, T.M., Yang, W., Gillespie, K., Mocarski, M., Byrne, E., Cintina, I., Hogan, P.F.: The economic burden of elevated blood glucose levels in 2017: diagnosed and undiagnosed diabetes, gestational diabetes mellitus, and prediabetes. Diabetes Care 42(9), 1661–1668 (2019)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Bassuk, S.S., Manson, J.E.: Lifestyle and risk of cardiovascular disease and type 2 diabetes in women: a review of the epidemiologic evidence. Am. J. Lifestyle Med. 2(3), 191–213 (2008)

    Article  Google Scholar 

  5. 5.

    American Diabetes Association: Impact of intensive lifestyle and metformin therapy on cardiovascular disease risk factors in the diabetes prevention program. Diabetes Care 28(4), 888–894 (2005)

    Article  Google Scholar 

  6. 6.

    Patil, S.B., Annese, V.F., Cumming, D.R.: Commercial aspects of biosensors for diagnostics and environmental monitoring. In: Advances in Nanosensors for Biological and Environmental Analysis, pp. 133–142. Elsevier, Oxford (2019)

    Google Scholar 

  7. 7.

    LaDue, J.S., Wróblewski, F., Karmen, A.: Serum glutamic oxaloacetic transaminase activity in human acute transmural myocardial infarction. Science 120(3117), 497–499 (1954)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Altintas, Z., Fakanya, W.M., Tothill, I.E.: Cardiovascular disease detection using bio-sensing techniques. Talanta 128, 177–186 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Girigoswami, K., Akhtar, N.: Nanobiosensors and fluorescence based biosensors: An overview. Int. J. Nano Dimens. 10(1), 1–17 (2019)

    CAS  Google Scholar 

  10. 10.

    Yousefi, F., Movahedpour, A., Shabaninejad, Z., Ghasemi, Y., Rabbani, S., Sobnani-Nasab, A., Mazoochi, M.: Electrochemical-based biosensors: new diagnosis platforms for cardiovascular disease. Curr. Vasc. Pharmacol. (2020)

  11. 11.

    Park, M.: Orientation control of the molecular recognition layer for improved sensitivity: a review. BioChip J. 13(1), 82–94 (2019)

    CAS  Article  Google Scholar 

  12. 12.

    Kang, S.M., Cho, H., Jeon, D., Park, S.H., Shin, D.S., Heo, C.Y.: A matrix metalloproteinase sensing biosensor for the evaluation of chronic wounds. BioChip J. 13(4), 323–332 (2019)

    Article  CAS  Google Scholar 

  13. 13.

    Wang, J.: Glucose biosensors: 40 years of advances and challenges. Electroanalysis 13(12), 983–988 (2001)

    CAS  Article  Google Scholar 

  14. 14.

    World Health Organization. Cardiovascular diseases (CVDs) (2019)

  15. 15.

    Timmis, A., Townsend, N., Gale, C.P., Torbica, A., Lettino, M., Petersen, S.E., De Smedt, D.: European Society of Cardiology: cardiovascular disease statistics 2019. Eur. Heart J. 41(1), 12–85 (2020)

    PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Benjamin, EJ., Muntner, P., Alonso, A., Bittencourt, M.S., Callaway, C.W., Carson, A.P., Delling, F.N.: Heart disease and stroke Statistics-2019 update a report from the American Heart Association. Circulation (2019)

  17. 17.

    Bahadır, E.B., Sezgintürk, M.K.: Applications of electrochemical immunosensors for early clinical diagnostics. Talanta 132, 162–174 (2015)

    Article  CAS  Google Scholar 

  18. 18.

    Qureshi, A., Gurbuz, Y., Niazi, J.H.: Biosensors for cardiac biomarkers detection: a review. Sens. Actuators B Chem. 171, 62–76 (2012)

    Article  CAS  Google Scholar 

  19. 19.

    Rezaei, B., Ghani, M., Shoushtari, A.M., Rabiee, M.: Electrochemical biosensors based on nanofibres for cardiac biomarker detection: a comprehensive review. Biosens. Bioelectron. 78, 513–523 (2016)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Kemp, M., Donovan, J., Higham, H., Hooper, J.: Biochemical markers of myocardial injury. Br. J. Anaesth. 93(1), 63–73 (2004)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    McDonnell, B., Hearty, S., Leonard, P., O’Kennedy, R.: Cardiac biomarkers and the case for point-of-care testing. Clin. Biochem. 42(7–8), 549–561 (2009)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Farah, C.S., Reinach, F.C.: The troponin complex and regulation of muscle contraction. FASEB J. 9(9), 755–767 (1995)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Kehl, D.W., Iqbal, N., Fard, A., Kipper, B.A., Landa, A.D.L.P., Maisel, A.S.: Biomarkers in acute myocardial injury. Transl. Res. 159(4), 252–264 (2012)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Santaló, M., Martin, A., Velilla, J., Povar, J., Temboury, F., Balaguer, J., Gich, I.: Using high-sensitivity troponin T: the importance of the proper gold standard. Am. J. Med. 126(8), 709–717 (2013)

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  25. 25.

    Hasić, S., Kiseljaković, E., Jadrić, R., Radovanović, J., Winterhalter-Jadrić, M.: Cardiac troponin I: the gold standard in acute myocardial infarction diagnosis. Bosnian J. Basic Med. Sci. 3(3), 41–44 (2003)

    Article  Google Scholar 

  26. 26.

    Liu, J.T., Chen, C.J., Ikoma, T., Yoshioka, T., Cross, J.S., Chang, S.J., Tanaka, J.: Surface plasmon resonance biosensor with high anti-fouling ability for the detection of cardiac marker troponin T. Anal. Chim. Acta 703(1), 80–86 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Dutra, R.F., Kubota, L.T.: An SPR immunosensor for human cardiac troponin T using specific binding avidin to biotin at carboxymethyldextran-modified gold chip. Clin. Chim. Acta 376(1–2), 114–120 (2007)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Palladino, P., Minunni, M., Scarano, S.: Cardiac Troponin T capture and detection in real-time via epitope-imprinted polymer and optical biosensing. Biosens. Bioelectron. 106, 93–98 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Gomes-Filho, S., Dias, A., Silva, M., Silva, B., Dutra, R.: A carbon nanotube-based electrochemical immunosensor for cardiac troponin T. Microchem. J. 109, 10–15 (2013)

    CAS  Article  Google Scholar 

  30. 30.

    Brondani, D., Piovesan, J.V., Westphal, E., Gallardo, H., Dutra, R.A.F., Spinelli, A., Vieira, I.C.: A label-free electrochemical immunosensor based on an ionic organic molecule and chitosan-stabilized gold nanoparticles for the detection of cardiac troponin T. Analyst 139(20), 5200–5208 (2014)

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Zanato, N., Talamini, L., Zapp, E., Brondani, D., Vieira, I.C.: Label-free electrochemical immunosensor for cardiac troponin T based on exfoliated graphite nanoplatelets decorated with gold nanoparticles. Electroanalysis 29(7), 1820–1827 (2017)

    CAS  Article  Google Scholar 

  32. 32.

    Wu, Q., Sun, Y., Zhang, D., Li, S., Zhang, Y., Ma, P., Song, D.: Ultrasensitive magnetic field-assisted surface plasmon resonance immunoassay for human cardiac troponin I. Biosens. Bioelectron. 96, 288–293 (2017)

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Kim, K., Park, C., Kwon, D., Kim, D., Meyyappan, M., Jeon, S., Lee, J.S.: Silicon nanowire biosensors for detection of cardiac troponin I (cTnI) with high sensitivity. Biosens. Bioelectron. 77, 695–701 (2016)

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Sarangadharan, I., Wang, S.L., Sukesan, R., Chen, P.C., Dai, T.Y., Pulikkathodi, A.K., Wang, Y.L.: Single drop whole blood diagnostics: portable biomedical sensor for cardiac troponin I detection. Anal. Chem. 90(4), 2867–2874 (2018)

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Bhatnagar, D., Kaur, I., Kumar, A.: Ultrasensitive cardiac troponin I antibody based nanohybrid sensor for rapid detection of human heart attack. Int. J. Biol. Macromol. 95, 505–510 (2017)

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Yola, M.L., Atar, N.: Development of cardiac troponin-I biosensor based on boron nitride quantum dots including molecularly imprinted polymer. Biosens. Bioelectron. 126, 418–424 (2019)

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Storz, J.F., Opazo, J.C., Hoffmann, F.G.: Gene duplication, genome duplication, and the functional diversification of vertebrate globins. Mol. Phylogenet. Evol. 66(2), 469–478 (2013)

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Xin, Y., Tang, X., Wang, H., Lu, S., Wang, Y., Zhang, Y., Chen, Q.: Functional characterization and expression analysis of myoglobin in high-altitude lizard Phrynocephaluserythrurus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 188, 31–36 (2015)

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Nasci, A.B.A., Orcy, R.B., Cabistany, L.D., Formalioni, A., Vecchio, F.B.D.: Acute responses of high-intensity circuit training in women: low physical fitness levels show higher muscle damage. Revista Brasileira de Cineantropometria & Desempenho Humano 20(5), 391–401 (2018)

    Article  Google Scholar 

  40. 40.

    Rozenman, Y., Gotsman, M.S.: The earliest diagnosis of acute myocardial infarction. Annu. Rev. Med. 45(1), 31–44 (1994)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  41. 41.

    Piloto, A.M., Ribeiro, D.S., Rodrigues, S.S.M., Santos, C., Santos, J.L., Sales, M.G.F.: Plastic antibodies tailored on quantum dots for an optical detection of myoglobin down to the femtomolar range. Sci. Rep. 8(1), 1–11 (2018)

    CAS  Article  Google Scholar 

  42. 42.

    Lee, I., Luo, X., Cui, X.T., Yun, M.: Highly sensitive single polyaniline nanowire biosensor for the detection of immunoglobulin G and myoglobin. Biosens. Bioelectron. 26(7), 3297–3302 (2011)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  43. 43.

    Kumar, V., Brent, J.R., Shorie, M., Kaur, H., Chadha, G., Thomas, A.G., Burke, M.G.: Nanostructured aptamer-functionalized black phosphorus sensing platform for label-free detection of myoglobin, a cardiovascular disease biomarker. ACS Appl. Mater. Interfaces. 8(35), 22860–22868 (2016)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Saks, V., Lipina, N., Smirnov, V., Chazov, E.: Studies of energy transport in heart cells: the functional coupling between mitochondrial creatine phosphokinase and ATP-ADP translocase: kinetic evidence. Arch. Biochem. Biophys. 173(1), 34–41 (1976)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  45. 45.

    Neumeier, D., Hofstetter, R.: Radioimmunoassay for subunit B in isoenzymes CK-MB and CK-BB of creatine phosphokinase. Clin. Chim. Acta 79(1), 107–113 (1977)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Zhang, L., Chen, X., Su, T., Li, H., Huang, Q., Wu, D., Han, Z.: Circulating miR-499 are novel and sensitive biomarker of acute myocardial infarction. J. Thorac. Dis. 7(3), 303 (2015)

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Garay, F., Kisiel, G., Fang, A., Lindner, E.: Surface plasmon resonance aided electrochemical immunosensor for CK-MB determination in undiluted serum samples. Anal. Bioanal. Chem. 397(5), 1873–1881 (2010)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Gupta, R.K., Pandya, R., Sieffert, T., Meyyappan, M., Koehne, J.E.: Multiplexed electrochemical immunosensor for label-free detection of cardiac markers using a carbon nanofiber array chip. J. Electroanal. Chem. 773, 53–62 (2016)

    CAS  Article  Google Scholar 

  49. 49.

    Zhang, D., Huang, L., Liu, B., Ni, H., Sun, L., Su, E., Zhao, X.: Quantitative and ultrasensitive detection of multiplex cardiac biomarkers in lateral flow assay with core-shell SERS nanotags. Biosens. Bioelectron. 106, 204–211 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    World Health Organization. Global report on diabetes (2016)

  51. 51.

    World Health Organization. Classification of diabetes mellitus (2019)

  52. 52.

    Heo, Y.J., Kim, S.H.: Toward long-term implantable glucose biosensors for clinical use. Appl. Sci. 9(10), 2158 (2019)

    CAS  Article  Google Scholar 

  53. 53.

    Hirakawa, Y., Arima, H., Zoungas, S., Ninomiya, T., Cooper, M., Hamet, P., Chalmers, J.: Impact of visit-to-visit glycemic variability on the risks of macrovascular and microvascular events and all-cause mortality in type 2 diabetes: the ADVANCE trial. Diabetes Care 37(8), 2359–2365 (2014)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Peyser, T.A., Balo, A.K., Buckingham, B.A., Hirsch, I.B., Garcia, A.: Glycemic variability percentage: a novel method for assessing glycemic variability from continuous glucose monitor data. Diabetes Technol. Therapeut. 20(1), 6–16 (2018)

    CAS  Article  Google Scholar 

  55. 55.

    Beck, R.W., Bergenstal, R.M., Riddlesworth, T.D., Kollman, C., Li, Z., Brown, A.S., Close, K.L.: Validation of time in range as an outcome measure for diabetes clinical trials. Diabetes Care 42(3), 400–405 (2019)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Heo, Y.J., Takeuchi, S.: Towards smart tattoos: implantable biosensors for continuous glucose monitoring. Adv. Healthc. Mater. 2(1), 43–56 (2013)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Villena Gonzales, W., Mobashsher, A.T., Abbosh, A.: The progress of glucose monitoring—a review of invasive to minimally and non-invasive techniques, devices and sensors. Sensors 19(4), 800 (2019)

    Article  CAS  Google Scholar 

  58. 58.

    Wiig, H., Swartz, M.A.: Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol. Rev. 92(3), 1005–1060 (2012)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Thennadil, S.N., Rennert, J.L., Wenzel, B.J., Hazen, K.H., Ruchti, T.L., Block, M.B.: Comparison of glucose concentration in interstitial fluid, and capillary and venous blood during rapid changes in blood glucose levels. Diabetes Technol. Therap. 3(3), 357–365 (2001)

    CAS  Article  Google Scholar 

  60. 60.

    Baca, J.T., Taormina, C.R., Feingold, E., Finegold, D.N., Grabowski, J.J., Asher, S.A.: Mass spectral determination of fasting tear glucose concentrations in nondiabetic volunteers. Clin. Chem. 53(7), 1370–1372 (2007)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Baca, J.T., Finegold, D.N., Asher, S.A.: Tear glucose analysis for the noninvasive detection and monitoring of diabetes mellitus. Ocul. Surf. 5(4), 280–293 (2007)

    PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Moyer, J., Wilson, D., Finkelshtein, I., Wong, B., Potts, R.: Correlation between sweat glucose and blood glucose in subjects with diabetes. Diabetes Technol. Therap. 14(5), 398–402 (2012)

    CAS  Article  Google Scholar 

  63. 63.

    Choi, J., Kang, D., Han, S., Kim, S.B., Rogers, J.A.: Thin, soft, skin-mounted microfluidic networks with capillary bursting valves for chrono-sampling of sweat. Adv. Healthc. Mater. 6(5), 1601355 (2017)

    Article  CAS  Google Scholar 

  64. 64.

    Diabetes Research in Children Network (DirecNet) Study Group. Evaluation of factors affecting CGMS calibration. Diabetes Technol. Therap. 8(3), 318–325 (2006)

  65. 65.

    Cameron, B.D., Baba, J.S., Coté, G.L.: Measurement of the glucose transport time delay between the blood and aqueous humor of the eye for the eventual development of a noninvasive glucose sensor. Diabetes Technol. Therap. 3(2), 201–207 (2001)

    CAS  Article  Google Scholar 

  66. 66.

    Rebrin, K., Steil, G.M.: Can interstitial glucose assessment replace blood glucose measurements? Diabetes Technol. Therap. 2(3), 461–472 (2000)

    CAS  Article  Google Scholar 

  67. 67.

    Shibata, H., Heo, Y.J., Okitsu, T., Matsunaga, Y., Kawanishi, T., Takeuchi, S.: Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring. Proc. Natl. Acad. Sci. 107(42), 17894–17898 (2010)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  68. 68.

    Heo, Y.J., Shibata, H., Okitsu, T., Kawanishi, T., Takeuchi, S.: Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc. Natl. Acad. Sci. 108(33), 13399–13403 (2011)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  69. 69.

    Christiansen, M.P., Klaff, L.J., Brazg, R., Chang, A.R., Levy, C.J., Lam, D., Kelley, L.A.: prospective multicenter evaluation of the accuracy of a novel implanted continuous glucose sensor: PRECISE II. Diabetes Technol. Therap. 20(3), 197–206 (2018)

    CAS  Article  Google Scholar 

  70. 70.

    Christiansen, M.P., Klaff, L.J., Bailey, T.S., Brazg, R., Carlson, G., Tweden, K.S.: A prospective multicenter evaluation of the accuracy and safety of an implanted continuous glucose sensor: the PRECISION study. Diabetes Technol. Therap. 21(5), 231–237 (2019)

    CAS  Article  Google Scholar 

  71. 71.

    US Food and Drug Administration: Summary of safety and effectiveness data (SSED), pp. 1–15. Eversense, Senseonics (2019)

    Google Scholar 

  72. 72.

    Waltz, E.: Sweet sensation. Biotechnology 37, 340–344 (2019)

    CAS  Google Scholar 

  73. 73.

    Lin, T., Gal, A., Mayzel, Y., Horman, K., Bahartan, K.: Non-invasive glucose monitoring: a review of challenges and recent advances. Curr. Trends Biomed. Eng. Biosci 6(5), 001–008 (2017)

    Article  Google Scholar 

  74. 74.

    Kim, J., Campbell, A.S., Wang, J.: Wearable non-invasive epidermal glucose sensors: a review. Talanta 177, 163–170 (2018)

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Nemaura Medical. Clinical Presentation sugarBEAT®, pp. 1–11 (2018)

  76. 76.

    Garland, M.J., Migalska, K., Mahmood, T.M.T., Singh, T.R.R., Woolfson, A.D., Donnelly, R.F.: Microneedle arrays as medical devices for enhanced transdermal drug delivery. Expert Rev. Med. Dev. 8(4), 459–482 (2011)

    CAS  Article  Google Scholar 

  77. 77.

    Lee, G., Ma, Y., Lee, Y.H., Jung, H.: Clinical evaluation of a low-pain long microneedle for subcutaneous insulin injection. BioChip J. 12(4), 309–316 (2018)

    CAS  Article  Google Scholar 

  78. 78.

    Takahashi, H., Heo, Y.J., Arakawa, N., Kan, T., Matsumoto, K., Kawano, R., Shimoyama, I.: Scalable fabrication of microneedle arrays via spatially controlled UV exposure. Microsyst. Nanoeng. 2(1), 1–9 (2016)

    Article  CAS  Google Scholar 

  79. 79.

    Wang, P.M., Cornwell, M., Prausnitz, M.R.: Minimally invasive extraction of dermal interstitial fluid for glucose monitoring using microneedles. Diabetes Technol. Therap. 7(1), 131–141 (2005)

    CAS  Article  Google Scholar 

  80. 80.

    Nvernale, M.A., Tang, B.C., York, R.L., Le, L., Hou, D.Y., Anderson, D.G.: Microneedle electrodes toward an amperometric glucose-sensing smart patch. Adv. Healthc. Mater. 3(3), 338–342 (2014)

    Article  CAS  Google Scholar 

  81. 81.

    Jina, A., Tierney, M.J., Tamada, J.A., McGill, S., Desai, S., Chua, B., Christiansen, M.: Design, development, and evaluation of a novel microneedle array-based continuous glucose monitor. J. Diabetes Sci. Technol. 8(3), 483–487 (2014)

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  82. 82.

    Samant, PP., Christiansen, M.P., Sattayasamitsathit, S., Campbell, A., Peyser, T.A., Windmiller, J.R., Bhavaraju, N.C.: 69-LB: a wearable microneedle array sensor shows high correlation between dermal glucose and venous blood glucose. In: The American Diabetes Association, Arlington, Va, June 12–16 (2020)

  83. 83.

    DeVries, J.H., Wentholt, I.M.E., Zwart, A., Hoekstra, J.B.: Pendra goes Dutch; lessons for the CE mark in Europe. Diabetes Res. Clin. Pract. 74, S93–S96 (2006)

    Article  Google Scholar 

  84. 84.

    Lipson, J., Bernhardt, J., Block, U., Freeman, W.R., Hofmeister, R., Hristakeva, M., Waydo, S.: Requirements for calibration in noninvasive glucose monitoring by Raman spectroscopy. J. Diabetes Sci. Technol. 3(2), 233–241 (2009)

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Alexeeva, N.V., Arnold, M.A.: Impact of tissue heterogeneity on noninvasive near-infrared glucose measurements in interstitial fluid of rat skin. J. Diabetes Sci. Technol. 4(5), 1041–1054 (2010)

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Vettoretti, M., Cappon, G., Acciaroli, G., Facchinetti, A., Sparacino, G.: Continuous glucose monitoring: current use in diabetes management and possible future applications. J. Diabetes Sci. Technol. 12(5), 1064–1071 (2018)

    PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Brandis, K.: Fluid physiology. the online textbook from http://www.anaesthesiamcq.com. (2017).

  88. 88.

    Scherz, W., Doane, M.G., Dohlman, C.H.: Tear volume in normal eyes and keratoconjunctivitis sicca. Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie 192(2), 141–150 (1974)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Huang, C.T., Chen, M.L., Huang, L.L., Mao, I.F.: Uric acid and urea in human sweat. Chin. J. Physiol. 45(3), 109–116 (2002)

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Zhao, F.J., Bonmarin, M., Chen, Z.C., Larson, M., Fay, D., Runnoe, D., Heikenfeld, J.: Ultra-simple wearable local sweat volume monitoring patch based on swellable hydrogels. Lab Chip 20(1), 168–174 (2020)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  91. 91.

    Charleer, S., Mathieu, C., Nobels, F., Gillard, P.: Accuracy and precision of flash glucose monitoring sensors inserted into the abdomen and upper thigh compared with the upper arm. Diabetes Obes. Metab. 20(6), 1503–1507 (2018)

    CAS  PubMed  Article  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the Hallym University Research Fund, 2020 (HRF-202006-012).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yun Jung Heo.

Ethics declarations

Conflict of interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, M., Heo, Y.J. Biosensing Technologies for Chronic Diseases. BioChip J (2021). https://doi.org/10.1007/s13206-021-00014-3

Download citation

Keywords

  • Biosensor
  • Chronic diseases
  • Biomarker
  • Cardiovascular disease
  • Diabetes