Development of Detection Methods for Zinc Pyrithione in Polypropylene via Simple Extraction Methods for Quality Control

Abstract

Zinc pyrithione (ZPT) is the antimicrobial substance and has been applied for various fields, including non-fouling coating paints and cosmetics. It also used for the tub part of the electronic machine with polypropylene (PP). Since the released ZPT can cause skeletal deformity or abnormality to coastal organisms, it is essential to quality check of ZPT in PP for environmental safety. However, as far as we knew, no previous reports about the analysis of ZPT in PP samples have been published; hence, we have developed a simple preparation method via extraction and precipitation. As assume that ZPT is just entrapped in the hydrocarbon chain of PP, ZPT was drawn out from the composites and homogeneously existed in the solution after untying the chain only precipitate PP with an organic solvent. This method could be applied for real manufactured samples with a low detection limit of 0.57 ppm within 10 min.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Reeder, N.L., Xu, J., Youngquist, R.S., Schwartz, J.R., Rust, R.C. & Saunders, C.W. The antifungal mechanism of action of zinc pyrithione. Br. J. Dermatol.165, 9–12 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Yasokawa, D., Murata, S., Iwahashi, Y., Kitagawa, E., Kishi, K., Okumura, Y. & Iwahashi, H. DNA microarray analysis suggests that zinc pyrithione causes iron starvation to the yeast Saccharomyces cerevisiae. J. Biosci. Bioeng.109, 479–486 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    Bragadin, M., Manente, S., Marton, D., Cima, F., Pia Rigobello, M. & Bindoli, A. The interaction of zinc pyrithione with mitochondria from rat liver and a study of the mechanism of inhibition of ATP synthesis. Appl. Organomet. Chem.17, 869–874 (2003).

    CAS  Article  Google Scholar 

  4. 4.

    Reeder, N.L., Kaplan, J., Xu, J., Youngquist, R.S., Wallace, J., Hu, P., Juhlin, K.D., Schwartz, J.R., Grant, R.A., Fieno, A., Nemeth, S., Reichling, T., Tiesman, J.P., Mills, T., Steinke, M., Wang, S.L. & Saunders, C.W. Zinc pyrithione inhibits yeast growth through copper influx and inactivation of iron-sulfur proteins. Antimicrob. Agents Chemother.55, 5753–5760 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Zhao, Y., Liu, Y., Sun, J., Sha, H., Yang, Y., Ye, Q., Yang, Q., Huang, B., Yu, Y. & Huang, H. Acute toxic responses of embryo- larval zebrafish to zinc pyrithione (ZPT) reveal embryological and developmental toxicity. Chemosphere205, 62–70 (2018).

    CAS  Article  Google Scholar 

  6. 6.

    Park, M., Cho, Y.-J., Lee, Y.W. & Jung, W.H. Understanding the mechanism of action of the anti-dandruff agent zinc pyrithione against Malassezia restricta. Sci. Rep.8, 1–11 (2018).

    Article  Google Scholar 

  7. 7.

    Nunes, B., Braga, M.R., Campos, J.C., Gomes, R., Ramos, A.S., Antunes, S.C. & Correia, A.T. Ecotoxicological effect of zinc pyrithione in the fresh-water fish Gambusia holbrooki. Ecotoxicology24, 1896–1905 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Cloyd, G.G., Wyman, M., Shadduck, J.A., Winrow, M.J. & Johnson, G.R. Ocular toxicity studies with zinc pyridinethione. Toxicol. Appl. Pharmacol.45, 771 (1978).

    CAS  Article  Google Scholar 

  9. 9.

    Snyder, D., Gralla, E., Coleman, G. & Wedig, J. Preliminary neurological evaluation of generalized weakness in zinc pyrithione-treated rats. Food Chem. Toxicol.15, 43–47 (1977).

    CAS  Article  Google Scholar 

  10. 10.

    Thomas, K.V. Determination of the antifouling agent zinc pyrithione in water samples by copper chelate formation and high-performance liquid chromatography atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A833, 105–109 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    Nakajima, K., Yasuda, T. & Nakazawa, H. High-performance liquid-chromatographic determination of zinc pyrithione in antidandruff preparations based on copper chelate formation. J. Chromatogr.502, 379–384 (1990).

    CAS  Article  Google Scholar 

  12. 12.

    Kim, T.H., Jung, G.H., Lee, E.H., Park, H.R., Lee, J.K. & Kim, H.G. Development and validation of liquid chromatography-tandem mass spectrometry method for simultaneous determination of zinc pyrithione and pyrithione in shampoos. Acta Chromatogr.30, 200–205 (2018).

    CAS  Google Scholar 

  13. 13.

    Das, S. & Khubdikar, K. A simple and facile spectrophotometric tool for quantification of zinc pyrithione (ZPT) in suspension. Chem. Data Collect.19, 100175 (2019).

    Article  Google Scholar 

  14. 14.

    Nguyen, N.L.T., Kim, E.J., Chang, S.-K. & Park, T.J. Sensitive detection of lead ions using sodium thiosulfate and surfactant-capped gold nanoparticles. BioChip J.10, 65–73 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Heo, N.S., Oh, S.Y., Ryu, M.Y., Baek, S.H., Park, T.J., Choi, C., Huh, Y.S. & Park, J.P. Affinity peptide-guided plasmonic biosensor for detection of noroviral protein and human norovirus. Biotechnol. Bioprocess Eng.24, 318–325 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    Nakaoki, T. & Harada, S. Melting behavior of bound solvent in isotactic polypropylene/o-dichlorobenzene gel. Polym. J.37, 429–433 (2005).

    CAS  Article  Google Scholar 

  17. 17.

    Komjarova, I. & Blust, R. Comparison of liquid-liquid extraction, solid-phase extraction and co-precipitation preconcentration methods for the determination of cadmium, copper, nickel, lead and zinc in seawater. Anal. Chim. Acta576, 221–228 (2006).

    CAS  Article  Google Scholar 

  18. 18.

    Lide, D.R., CRC handbook of chemistry and physics, CRC press, 2004.

  19. 19.

    Reichardt, C. & Welton, T., Solvents and solvent effects in organic chemistry, John Wiley & Sons, 2011.

  20. 20.

    Ashkenazi, G. & Weaver, G.C. Using lecture demonstrations to promote the refinement of concepts: the case of teaching solvent miscibility. Chemistry Education Research and Practice8, 186–196 (2007).

    CAS  Article  Google Scholar 

  21. 21.

    Bagheri, R. Study of the effect of γ-absorbed dose on degradation of polypropylene/starch-filled polymer containing photo-initiators by spectroscopic methods. Radiat. Phys. Chem.78, 765–769 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Sakkas, V.A., Shibata, K., Yamaguchi, Y., Sugasawa, S. & Albanis, T. Aqueous phototransformation of zinc pyrithione — Degradation kinetics and byproduct identification by liquid chromatography-atmospheric pressure chemical ionisation mass spectrometry. J. Chromatogr. A1144, 175–182 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    Shrivastava, A. & Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci.2, 21 (2011).

    Article  Google Scholar 

  24. 24.

    Black, J. & Howes, D. Toxicity of pyrithiones. Clin. Toxicol.13, 1–26 (1978).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Basic Science Re-search Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2018R1A4 A1022647). It was further supported by the Chung-Ang University Graduate Research Scholarship in 2017.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tae Jung Park.

Ethics declarations

Conflict of Interests The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, C.Y., Moon, S., Baek, S.H. et al. Development of Detection Methods for Zinc Pyrithione in Polypropylene via Simple Extraction Methods for Quality Control. BioChip J 14, 211–217 (2020). https://doi.org/10.1007/s13206-020-4210-7

Download citation

Keywords

  • Zinc pyrithione
  • Polymer extraction
  • Quality control
  • UV/Vis spectroscopy
  • Rapid determination
  • Methodology