Skip to main content
Log in

Effects of Ionic Strength in the Medium on Sample Preconcentration Utilizing Nano-interstices between Self-Assembled Monolayers of Gold Nanoparticles

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

This paper investigated the effects of ionic strength in the medium on a preconcentrator for a protein sample with low concentration. The preconcentration chip was designed and fabricated using a polydimethylsiloxane replica through standard lithophotography. A glass substrate is silanized prior to functionalizing the nanoparticles for self-assembly at a designed region. Due to the overlap of electrical double layers in a nanofluidic channel, a concentration polarization effect can be achieved using an electric field. A nonlinear electrokinetic flow is induced, resulting in the fast accumulation of proteins in front of the induced ionic depletion zone, so called exclusion-enrichment effect. Thus, the protein sample can be driven by electroosmotic flow and accumulated at a specific location. The chip is used to collect fluorescein isothiocyanate-labeled bovine serum albumin (FITC-BSA) diluted in phosphate- buffered saline (PBS) buffer solution. Different concentrations of the buffer media were studied herein. Fluorescence intensity images show that the buffer concentration of 4 mM is more appropriate than all the other ones. The sample of FITC-BSA with an initial concentration of 10 μM in the 4 mM PBS solution increases its concentration at the desired region by up to 50 times within 30 min, demonstrating the results in this investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin, C.C., Hsu, J.L. & Lee, G. Bin. Sample preconcentration in microfluidic devices. Microfluid. Nanofluid. 10, 481–511 (2011).

    Article  Google Scholar 

  2. Islam, M.R. & Serpe, M.J. Label-free detection of low protein concentration in solution using a novel colorimetric assay. Biosens. Bioelectron. 49, 133–138 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Koh, Y. et al. Nanoslit-concentration-chip integrated microbead-based protein assay system for sensitive and quantitative detection. RSC Adv. 7, 29679–29685 (2017).

    Article  CAS  Google Scholar 

  4. Wang, C., Shi, Y., Wang, J., Pang, J. & Xia, X.H. Ultrasensitive protein concentration detection on a micro/nanofluidic enrichment chip using fluorescence quenching. ACS Appl. Mater. Interfaces 7, 6835–6841 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Duan, C., Wang, W. & Xie, Q. Review article: Fabrication of nanofluidic devices. Biomicrofluidics 7, 026501 (2013).

    Article  CAS  PubMed Central  Google Scholar 

  6. Wang, Y.C., Stevens, A.L. & Han, J. Million-fold preconcentration of proteins and peptides by nanofluidic filter. Anal. Chem. 77, 4293–4299 (2005).

    Article  CAS  PubMed  Google Scholar 

  7. Wu, D. & Steckl, A.J. High speed nanofluidic protein accumulator. Lab Chip 9, 1890 (2009).

    Article  CAS  PubMed  Google Scholar 

  8. Wang, J., Zhang, L., Xue, J. & Hu, G. Ion diffusion coefficient measurements in nanochannels at various concentrations. Biomicrofluidics 8, 1 (2014).

    CAS  Google Scholar 

  9. Kim, S.M., Burns, M.A. & Hasselbrink, E.F. Electrokinetic protein preconcentration using a simple glass/poly (dimethylsiloxane) microfluidic chip. Anal. Chem. 78, 4779–4785 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Jeong, H.L., Chung, S., Sung, J.K. & Han, J. Poly(dimethylsiloxane)-based protein preconcentration using a nanogap generated by junction gap breakdown. Anal. Chem. 79, 6868–6873 (2007).

    Article  CAS  Google Scholar 

  11. Yang, R.-J., Pu, H.-H. & Wang, H.-L. Ion concentration polarization on paper-based microfluidic devices and its application to preconcentrate dilute sample solutions. Biomicrofluidics 9, 014122 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lee, J.H., Song, Y.-A. & Han, J. Multiplexed proteomic sample preconcentration device using surface-patterned ion-selective membrane. Lab Chip 8, 596 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Syed, A., Mangano, L., Mao, P., Han, J. & Song, Y. Creating sub-50 nm nanofluidic junctions in a PDMS microchip via self-assembly process of colloidal silica beads for electrokinetic concentration of biomolecules. Lab Chip 14, 4455–4460 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jen, C.P., Amstislavskaya, T.G., Kuo, C.C. & Chen, Y.H. Protein preconcentration using nanofractures generated by nanoparticle-assisted electric breakdown at junction gaps. PLoS ONE 9, e102050 (2014).

    Book  Google Scholar 

  15. Jen, C.P., Amstislavskaya, T.G., Chen, K.F. & Chen, Y.H. Sample preconcentration utilizing nanofractures generated by junction gap breakdown assisted by self-assembled monolayer of gold nanoparticles. PLoS ONE 10, e0126641 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Pu, Q., Yun, J., Temkin, H. & Liu, S. Ion-enrichment and ion-depletion effect of nanochannel structures. Nano Lett. 4, 1099–1103 (2004).

    Article  CAS  Google Scholar 

  17. Quoc, T.V., Wu, M.S., Bui, T.T., Duc, T.C. & Jen, C.P. A compact microfluidic chip with integrated impedance biosensor for protein preconcentration and detection. Biomicrofluidics 11 (2017).

    Google Scholar 

  18. Mani, A., Zangle, T.A. & Santiago, J.G. On the propagation of concentration polarization from microchannelnanochannel interfaces Part I: Analytical model and characteristic analysis. Langmuir 25, 3898–3908 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rohani, A. et al. Frequency-selective electrokinetic enrichment of biomolecules in physiological media based on electrical double-layer polarization. Nanoscale 9, 12124–12131 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rohani, A., Varhue, W., Liao, K. & Chou, C. Nanoslit design for ion conductivity gradient enhanced dielectrophoresis for ultrafast biomarker enrichment in physiological media. Biomicrofluidics 10, 033109 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chun, H., Chung, T.D. & Ramsey, J.M. High yield sample preconcentration using a highly ion-conductive charge-selective polymer. Anal. Chem. 82, 6287–6292 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jung, B., Bharadwaj, R. & Santiago, J.G. On-chip millionfold sample stacking using transient isotachophoresis. Anal. Chem. 78, 2319–2327 (2006).

    Article  CAS  PubMed  Google Scholar 

  23. Hofmann, O., Che, D., Cruickshank, K.A. & Muller, U.R. Adaptation of capillary isoelectric focusing to microchannels on a glass chip. Anal. Chem. 71, 678–686 (1999).

    Article  CAS  PubMed  Google Scholar 

  24. Schrott, W. et al. Study on surface properties of PDMS microfluidic chips treated with albumin. Biomicrofluidics 3, 1–15 (2009).

    Article  CAS  Google Scholar 

  25. Linder, V., Verpoorte, E., Thormann, W., De Rooij, N.F. & Sigrist, H. Surface biopassivation of replicated poly (dimethylsiloxane) microfluidic channels and application to heterogeneous immunoreaction with on-chip fluorescence detection. Anal. Chem. 73, 4181–4189 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Oldham, K.B. A Gouy-Chapman-Stern model of the double layer at a (metal)/(ionic liquid) interface. J. Electroanal. Chem. 613, 131–138 (2008).

    Article  CAS  Google Scholar 

  27. Brown, M.A., Goel, A. & Abbas, Z. Effect of electrolyte concentration on the stern layer thickness at a charged interface. Angew. Chem. Int. Ed. 55, 3790–3794 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ping Jen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, NV., Wu, JS. & Jen, CP. Effects of Ionic Strength in the Medium on Sample Preconcentration Utilizing Nano-interstices between Self-Assembled Monolayers of Gold Nanoparticles. BioChip J 12, 317–325 (2018). https://doi.org/10.1007/s13206-018-2402-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-018-2402-1

Keywords

Navigation