Skip to main content
Log in

A Handheld Electronics Module for Dielectrophoretic Impedance Measurement of Cancerous Cells in the Microchip

  • Original Article
  • Published:
BioChip Journal Aims and scope Submit manuscript

Abstract

This study proposes a handheld electronics module integrated with the microchip that utilizes dielectrophoretic (DEP) impedance measurement for characterizing of cancerous cell lines. The microchip consists of circle-on-line-shaped interdigitated microelectrodes, which were used for DEP concentration and impedance sensing of cells within a chamber, patterned by standard microfabrication processes. The handheld electronics module was built for measuring impedance of cancerous cells in the microchip. It can provide sinusoidal electrical signals in a large range of frequencies. The analyzed results demonstrate a high-sensitivity impedance measurement. Meanwhile, the linear relationships between the admittance variation and the number of cell were observed for both two human lung cell lines, namely A549 human lung carcinoma cells and MRC-5 human lung epithelial cells. The difference in the slopes of these characteristic lines could be used to distinguish two stages of lung cells. The proposed device is simple to operate, has high sensitivity, inexpensive and portable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Torre, L.A. et al. Global cancer statistics, 2012. Ca-Cancer J. Clin. 65, 87–108 (2015).

    Article  PubMed  Google Scholar 

  2. Shacham-Diamand, Y. et al. Optical and electrical interfacing technologies for living cell bio-chips. Curr. Pharm. Biotechnol. 11, 376–383 (2010).

    Article  CAS  PubMed  Google Scholar 

  3. Stiharu, I., Alazzam, A., Nerguizian, V. & Roman, D. Single living cell manipulation and identification using microsystems technologies. Microsyst. Nanoeng. 1, 15031 (2015).

    Article  CAS  Google Scholar 

  4. Xu, Y. et al. A review of impedance measurements of whole cells. Biosens. Bioelectron. 77, 824–836 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. Chuang, C.H., Huang, Y.W. & Wu, Y.T. System-level biochip for impedance sensing and programmable manipulation of bladder cancer cells. Sensors 11, 11021–11035 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Han, A., Yang, L. & Frazier, A.B. Quantification of the heterogeneity in breast cancer cell lines using whole-cell impedance spectroscopy. Clin. Cancer Res. 13, 139–143 (2007).

    Article  PubMed  Google Scholar 

  7. Mulhall, H.J. et al. Cancer, pre-cancer and normal oral cells distinguished by dielectrophoresis. Anal. Bioanal. Chem. 401, 2455–2463 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Yang, L., Arias, L.R., Lane, T.S., Yancey, M.D. & Mamouni, J. Real-time electrical impedance-based measurement to distinguish oral cancer cells and non-cancer oral epithelial cells. Anal. Bioanal. Chem. 399, 1823–1833 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, H.C., Nguyen, N.V., Lin, R.Y. & Jen, C.P. Characterizing Esophageal Cancerous Cells at Different Stages Using the Dielectrophoretic Impedance Measurement Method in a Microchip. Sensors 17, 1705–1053 (2017).

    Article  Google Scholar 

  10. Park, Y. et al. Microelectrical Impedance Spectroscopy for the Differentiation between Normal and Cancerous Human Urothelial Cell Lines: Real-Time Electrical Impedance Measurement at an Optimal Frequency. Biomed Res. Int. 2016, 1–10 (2016).

    Google Scholar 

  11. Kang, G. et al. Discrimination between the human prostate normal cell and cancer cell by using a novel electrical impedance spectroscopy controlling the crosssectional area of a microfluidic channel. Biomicrofluidics 7, 44126 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Salmanzadeh, A. et al. Investigating dielectric properties of different stages of syngeneic murine ovarian cancer cells. Biomicrofluidics 7, 11809 (2013).

    Article  CAS  PubMed  Google Scholar 

  13. Abiri, H. et al. Monitoring the spreading stage of lung cells by silicon nanowire electrical cell impedance sensor for cancer detection purposes. Biosens. Bioelectron. 68, 577–585 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Yafouz, B., Kadri, N.A. & Ibrahim, F. Dielectrophoretic manipulation and separation of microparticles using microarray dot electrodes. Sensors (Basel, Switzerland) 14, 6356–6369 (2014).

    Article  CAS  Google Scholar 

  15. Qian, C. et al. Dielectrophoresis for bioparticle manipulation. Int. J. Mol. Sci. 15, 18281–18309 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chen, G.H. et al. Isolating and concentrating rare cancerous cells in large sample volumes of blood by using dielectrophoresis and stepping electric fields. BioChip J. 8, 67–74 (2014).

    Article  CAS  Google Scholar 

  17. Fernandez, R.E., Rohani, A., Farmehini, V. & Swami, N.S. Review: Microbial analysis in dielectrophoretic microfluidic systems. Anal. Chim. 966, 11–33 (2017).

    Article  CAS  Google Scholar 

  18. Park, H., Kim, D. & Yun, K.S. Single-cell manipulation on microfluidic chip by dielectrophoretic actuation and impedance detection. Sens. Actuators, B 150, 167–173 (2010).

    Article  CAS  Google Scholar 

  19. Hamada, R. et al. A rapid bacteria detection technique utilizing impedance measurement combined with positive and negative dielectrophoresis. Sens. Actuators, B 181, 439–445 (2013).

    Article  CAS  Google Scholar 

  20. Wang, M.H., Kao, M.F. & Jang, L.S. Single HeLa and MCF-7 cell measurement using minimized impedance spectroscopy and microfluidic device. Rev. Sci. Instrum. 82, 64302 (2011).

    Article  CAS  Google Scholar 

  21. Xie, X. et al. In vitro hyperthermia studied in a continuous manner using electric impedance sensing. RSC Adv. 5, 62007–62016 (2015).

    Article  CAS  Google Scholar 

  22. Hong, J.-L., Lan, K.-C. & Jang, L.-S. Electrical characteristics analysis of various cancer cells using a microfluidic device based on single-cell impedance measurement. Sens. Actuators, B 173, 927–934 (2012).

    Article  CAS  Google Scholar 

  23. Jen, C.P., Chang, H.H., Huang, C.T. & Chen, K.H. A microfabricated module for isolating cervical carcinoma cells from peripheral blood utilizing dielectrophoresis in stepping electric fields. Microsyst. Technol. 18, 1887–1896 (2012).

    Article  CAS  Google Scholar 

  24. Jen, C.P. & Chen, T.W. Selective trapping of live and dead mammalian cells using insulator-based dielec trophoresis within open-top microstructures. Biomed. Microdevices 11, 597–607 (2009).

    Article  PubMed  Google Scholar 

  25. Ibrahim, M., Claudel, J., Kourtiche, D. & Nadi, M. Geometric parameters optimization of planar interdigitated electrodes for bioimpedance spectroscopy. J. Electr. Bioimp. 4, 13–22 (2013).

    Article  Google Scholar 

  26. Ngo, T.T., Shirzadfar, H., Kourtiche, D. & Nadi, M.A Planar Interdigital Sensor for Bio-impedance Measurement: Theoretical analysis, Optimization and Simulation. J. Nano-Electron. Phys. 6, 1011 (2014).

    Google Scholar 

  27. Hong, J. et al. AC frequency characteristics of coplanar impedance sensors as design parameters. Lab Chip 5, 270–279 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Linderholm, P., Bertsch, A. & Renaud, P. Resistivity probing of multi-layered tissue phantoms using microelectrodes. Physiol. Meas. 25, 645–658 (2004).

    Article  PubMed  Google Scholar 

  29. Daniels, J.S. & Pourmand, N. Label-free impedance biosensors: Opportunities and challenges. Electroanalysis 19, 1239–1257 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jang, L.S. & Wang, M.H. Microfluidic device for cell capture and impedance measurement. Biomed. Microdevices 9, 737–743 (2007).

    Article  PubMed  Google Scholar 

  31. Tsai, S.L. & Wang, M.H. 24 h observation of a single HeLa cell by impedance measurement and numerical modeling. Sens. Actuators, B 229, 225–231 (2016).

    Article  CAS  Google Scholar 

  32. Xiao, C. & Luong, J.H. On-Line Monitoring of Cell Growth and Cytotoxicity Using Electric Cell-Substrate Impedance Sensing (ECIS). Biotechnol. Progr. 19, 1000–1005 (2003).

    Article  CAS  Google Scholar 

  33. Nguyen, T.A., Tiberius, B., Pliquett, U. & Urban, G.A. An impedance biosensor for monitoring cancer cell attachment, spreading and drug-induced apoptosis. Sens. Actuators, A 241, 231–237 (2016).

    Article  CAS  Google Scholar 

  34. Jun, H.S., Dao, L.T.M., Pyun, J.C. & Cho, S. Effect of cell senescence on the impedance measurement of adipose tissue-derived stem cells. Enzyme Microb. Technol. 53, 302–306 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ping Jen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, NV., Yeh, JH. & Jen, CP. A Handheld Electronics Module for Dielectrophoretic Impedance Measurement of Cancerous Cells in the Microchip. BioChip J 12, 208–215 (2018). https://doi.org/10.1007/s13206-018-2302-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13206-018-2302-4

Keywords

Navigation