BioChip Journal

, Volume 12, Issue 2, pp 137–145 | Cite as

Dual Applicability of Polyaniline Coated Gold Nanorods: A Study of Antibacterial and Redox Activity

  • Xiaohong Liang
  • Saravanan Govindaraju
  • Kyusik Yun
Original Article


Non-agglomerated, dual-purpose monodispersed gold nanorods (GNRs) were synthesized by using a seed-mediated method, and subsequent in situ chemical polymerization yielded polyaniline-coated gold nanorods (PANI-GNRs). The synthesized GNRs and PANI-GNRs were characterized by electron microscopic analyses, selected-area electron diffraction patterns, and element analyses. The prepared nanomaterials had an average length of 40±0.4 nm and a diameter of 15±0.2 nm. Furthermore, the PANI coating around the GNRs had a thickness of ~21 nm. These nanomaterials were also characterized by ultraviolet- visible and Fourier transform-infrared spectroscopies. While the absorption peaks of GNRs were observed at 520 and 675 nm, those of PANI-GNRs showed absorption maxima at 325 and 665 nm. The combination of 0.91 vol% of aniline with 5 mL of GNRs provided better electrochemical properties at 0.52 V and 1.30 V. The minimum inhibitory concentrations of laser-irradiated PANI-GNRs, PANI-GNRs, and laser-irradiated GNRs against Escherichia coli and Staphylococcus aureus were determined by using the micro-dilution method and compared to those of kanamycin (standard drug), revealing the significant bactericidal activity of laser-irradiated PANI-GNRs. This activity of the PANI-GNRs was also supported by the results of fluorescence and atomic force microscopy imaging. Thus, the synthesized nanomaterials can be potentially utilized for waste water treatment and biomedical/ pharmaceutical applications.


Gold nanorods Polyaniline Electrochemical performance Antibacterial properties 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Doria, G. et al. Noble metal nanoparticles for biosensing applications. Sens. 12, 1657–1687 (2012).CrossRefGoogle Scholar
  2. 2.
    Huang, X., Neretina, S. & El-Sayed, M. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv. Mater. 21, 4880–4910 (2009).CrossRefPubMedGoogle Scholar
  3. 3.
    Qu, X. et al. Fluorescent gold nanoclusters: synthesis and recent biological application. J. Nanomater. 6, 1–13 (2015).CrossRefGoogle Scholar
  4. 4.
    Sotiriou, G.A. et al. Photothermal killing of cancer cells by the controlled plasmonic coupling of silica-coated Au/Fe2O3 nanoaggregates. Adv. Funct. Mater. 24, 2818–2827 (2014).CrossRefGoogle Scholar
  5. 5.
    Stockman, M. Nanoplasmonics: The physics behind the applications. Phys. Today 64, 39–44 (2011).CrossRefGoogle Scholar
  6. 6.
    Schuller, J. et al. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9, 193–204 (2010).CrossRefPubMedGoogle Scholar
  7. 7.
    Perezjuste, J., Pastorizasantos, I., Lizmarzan, L. & Mulvaney, P. Gold nanorods: Synthesis, characterization and applications. Coord. Chem. Rev. 249, 1870–1901 (2005).CrossRefGoogle Scholar
  8. 8.
    Lal, S., Link, S. & Halas, N. Nano-optics from sensing to waveguiding. Nat. Photonics 1, 641–648 (2007).CrossRefGoogle Scholar
  9. 9.
    Cortie, M. & McDonagh, A. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 111, 3713–3735 (2011).CrossRefPubMedGoogle Scholar
  10. 10.
    Skrabalak, S. et al. Gold nanocages: synthesis, properties, and applications. Acc. Chem. Res. 41, 1587–1595 (2008).CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Xia, Y., Xiong, Y., Lim, B. & Skrabalak, S. Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physics. Angew. Chem. Int. Ed. 48, 60–103 (2009).CrossRefGoogle Scholar
  12. 12.
    Halas, N., Lal, S., Chang, W., Link, S. & Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011).CrossRefPubMedGoogle Scholar
  13. 13.
    Tao, A., Habas, S. & Yang, P. Shape control of colloidal metal nanocrystals. Small 4, 310–325 (2008).CrossRefGoogle Scholar
  14. 14.
    Fan, J. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).CrossRefPubMedGoogle Scholar
  15. 15.
    Castillo-Martínez, J. et al. Antibacterial and antibiofilm activities of the photothermal therapy using gold nanorods against seven different bacterial strains. J. Nanomater. 2015, 177–184 (2015).CrossRefGoogle Scholar
  16. 16.
    Huang, H., Barua, S., Kay, D. & Rege, K. Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes. Acs Nano 3, 2941–2952 (2009).CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Doering, W. & Nie, S. Spectroscopic tags using dyeembedded nanoparticles and surface-enhanced Raman scattering. Anal. Chem. 75, 6171–6176 (2003).CrossRefPubMedGoogle Scholar
  18. 18.
    von Maltzahn, G. et al. SERS-Coded Gold Nanorods as a Multifunctional Platform for Densely Multiplexed Near-Infrared Imaging and Photothermal Heating. Adv. Mater. 21, 3175–3180 (2009).CrossRefGoogle Scholar
  19. 19.
    Mallick, S., Sun, I., Kim, K. & Yi, D. Silica Coated Gold Nanorods for Imaging and Photo-Thermal Therapy of Cancer Cells. J. Nanosci. Nanotechnol. 13, 3223–3229 (2013).CrossRefPubMedGoogle Scholar
  20. 20.
    Tan, X. et al. Polyvinylpyrrolidone-(PVP-) coated silver aggregates for high performance surface-enhanced Raman scattering in living cells. Nanotechnol. 20, 1–7 (2009).Google Scholar
  21. 21.
    Wang, Z. et al. Electropolymerization and catalysis of well-dispersed polyaniline/carbon nanotube/gold composite. J. Electroanal. Chem. 599, 121–126 (2007).CrossRefGoogle Scholar
  22. 22.
    Chandrakanthi, N. & Careem, M. Thermal stability of polyaniline. Polym. Bull. 44, 101–108 (2000).CrossRefGoogle Scholar
  23. 23.
    Boara, G. & Sparpaglione, M. Synthesis of polyanilines with high electrical conductivity. Synth. Met. 72, 135–140 (1995).CrossRefGoogle Scholar
  24. 24.
    Sadek, A., Wlodarski, W., Kalantar-Zadeh, K., Baker, C. & Kaner, R. Doped and dedoped polyaniline nanofiber based conductometric hydrogen gas sensors. Sens. Actuators, A 139, 53–57 (2007).CrossRefGoogle Scholar
  25. 25.
    Jangid, N. et al. Synthesis of dye-substituted polyanilines and study of their conducting and antimicrobial behavior. Cogent Chem. 1, 1084666 (2015).CrossRefGoogle Scholar
  26. 26.
    Kanwal, F., Siddiqui, S., Tasleem, S., Sakina, G. & Jamil, T. Synthesis, Characterization of polyaniline/wood and polyaniline/carbon composites. J. Chem. Soc. Pak. 31, 882–887 (2009).Google Scholar
  27. 27.
    Ghaffari-Moghaddam, M. & Eslahi, H. Synthesis, characterization and antibacterial properties of a novel nanocomposite based on polyaniline/polyvinyl alcohol/Ag. Arabian J. Chem. 7, 846–855 (2014).CrossRefGoogle Scholar
  28. 28.
    Saini, D. & Basu, T. Synthesis and characterization of nanocomposites based on polyaniline-gold/graphene nanosheets. Appl. Nanosci. 2, 467–479 (2012).CrossRefGoogle Scholar
  29. 29.
    Gopalakrishnan, K., Ramesh, C., Ragunathan, V. & Thamilselvan, M. Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline. Dig. J. Nanomater. Bios. 7, 833–839 (2012).Google Scholar
  30. 30.
    Bian, L., Bao, L., Wang, J. & Lei, J. In situ preparation of monodispersed Ag/polyaniline/Fe3O4 nanoparticles via heterogeneous nucleation. Nanoscale Res. Lett. 8, 1–6 (2013).CrossRefGoogle Scholar
  31. 31.
    Syed, A. & Dinesan, M. Review: polyaniline -a novel polymeric material. Talanta 38, 815–837 (1991).CrossRefPubMedGoogle Scholar
  32. 32.
    Tan, Y., Zhang, Y. & Kan, J. Synthesis and properties on polyaniline in the presence of nickel chloride. Express Polym. Lett. 3, 333–339 (2009).CrossRefGoogle Scholar
  33. 33.
    Guimard, N., Gomez, N. & Schmidt, C. Conducting polymers in biomedical engineering. Prog. Polym. Sci. 32, 876–921 (2007).CrossRefGoogle Scholar
  34. 34.
    Ge, C., Yang, X. & Hou, B. Synthesis of polyaniline nanofiber and anticorrosion property of polyaniline-epoxy composite coating for Q235 steel. J. Coat. Technol. Res. 95, 9–69 (2012).Google Scholar
  35. 35.
    Bogdanovic, U. et al. Nanomaterial with High Antimicrobial Efficacy-Copper/Polyaniline Nanocomposite. ACS Appl. Mater. Interfaces 7, 1955–1966 (2015).CrossRefPubMedGoogle Scholar
  36. 36.
    Shinde, S. & Kher, J. A Review on Polyaniline and Its Noble Metal Composites. Int. J. Innovative Res. Sci. Eng. Technol. 3, 16570–16576 (2014).CrossRefGoogle Scholar
  37. 37.
    Boomi, P. & Prabu, H. Synthesis, characterization and antibacterial analysis of polyaniline/Au-Pd nanocomposite. Colloids Surf., A 429, 51–59 (2013).CrossRefGoogle Scholar
  38. 38.
    Zhu, Y. & Ramasamy, M. Antibacterial Activity of Ordered Gold Nanorod Arrays. Acs Appl. Mater. Interfaces 6, 15078–15085 (2014)CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang, C., Govindaraju, S., Giribabu, K., Huh, Y. & Yun, K. AgNWs-PANI nanocomposite based electrochemical sensor for detection of 4-nitrophenol. Sens. Actuator, B 252, 616–623 (2017).CrossRefGoogle Scholar
  40. 40.
    Amin, R., Mohamed, M., Ramadan, M., Verwanger, T. & Krammer, B. Rapid and sensitive microplate assay for screening the effect of silver and gold nanoparticles on bacteria. Nanomedicine 4, 637–643 (2009).CrossRefPubMedGoogle Scholar
  41. 41.
    Prabhakar, P., Raj, S., Anuradha, P., Sawant, S. & Doble, M. Biocompatibility studies on polyaniline and polyaniline-silver nanoparticle coated polyurethane composite. Colloids Surf. B 86, 146–153 (2011).CrossRefGoogle Scholar
  42. 42.
    Humpolicek, P., Kasparkova, V., Saha, P. & Stejskal, J. Biocompatibility of polyaniline. Synth. Met. 162, 722–727 (2012).CrossRefGoogle Scholar
  43. 43.
    Gizdavic-Nikolaidis, M., Bennett, J., Zujovic, Z., Swift, S. & Bowmaker, G. Characterization and antimicrobial efficacy of acetone extracted aniline oligomers. Synth. Met. 162, 1114–1119 (2012).CrossRefGoogle Scholar
  44. 44.
    Liang, X. et al. Preparation and antibacterial activities of polyaniline/Cu 0.05 Zn 0.95 O nanocomposites. Dalton Trans. 41, 2804–2811 (2012).CrossRefPubMedGoogle Scholar
  45. 45.
    Wu, C. Preparation and characterization of an aromatic polyester/polyaniline composite and its improved counterpart. eXPRESS Polym. Lett. 6, 465–475 (2012).Google Scholar
  46. 46.
    Wu, C. Aliphatic-aromatic polyester-polyaniline composites: preparation, characterization, antibacterial activity and conducting properties. Polym. Int. 61, 1556–1563 (2012).CrossRefGoogle Scholar

Copyright information

© The Korean BioChip Society and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiaohong Liang
    • 1
  • Saravanan Govindaraju
    • 1
  • Kyusik Yun
    • 1
  1. 1.Department of BionanotechnologyGachon UniversityGyeonggi-doRepublic of Korea

Personalised recommendations