Identification and characterization of a novel glucomannanase from Paenibacillus polymyxa

Abstract

Konjac glucomannan oligosaccharide has attracted much attention due to its broad biological activities. Specific glucomannan degrading enzymes are effective tools for the production of oligosaccharides from konjac glucomannan. However, there are still few reports of commercial enzymes that can specifically degrade konjac glucomannan. The gene ppgluB encoding a glucomannanase consisting of 553 amino acids (61.5 kDa) from Paenibacillus polymyxa 3–3 was cloned and heterologous expressed in Escherichia coli BL21 (DE3). The recombinant PpGluB showed high specificity for the degradation of konjac glucomannan. Moreover, the hydrolytic products of PpGluB degrade konjac glucomannan were a series of oligosaccharides with degrees of polymerisation of 2–12. Furthermore, the biochemical properties indicated that PpGluB is the optimal active at 45 to 55 °C and pH 5.0–6.0, and shows highly pH stability over a very broad pH range. The present characteristics indicated that PpGluB is a potential tool to be used to produce oligosaccharides from konjac glucomannan.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akesowan A (2015) Optimization of textural properties of Konjac gels formed with κ-carrageenan or xanthan and xylitol as ingredients in jelly drink processing. J Food Process Preserv 39:1735–1743

    CAS  Article  Google Scholar 

  2. Albrecht S, van Muiswinkel GCJ, Xu JQ, Schols HA, Voragen AGJ, Gruppen H (2011) Enzymatic production and characterization of Konjac glucomannan oligosaccharides. J Agric Food Chem 59:12658–12666. https://doi.org/10.1021/jf203091h

    CAS  Article  PubMed  Google Scholar 

  3. Al-Ghazzewi FH, Tester RF (2012) Efficacy of cellulase and mannanase hydrolysates of konjac glucomannan to promote the growth of lactic acid bacteria. J Sci Food Agric 92:2394–2396. https://doi.org/10.1002/jsfa.5678

    CAS  Article  PubMed  Google Scholar 

  4. Al-Ghazzewi FH, Khanna S, Tester RF, Piggott J (2007) The potential use of hydrolysed konjac glucomannan as a prebiotic. J Sci Food Agric 87:1758–1766. https://doi.org/10.1002/jsfa.2919

    CAS  Article  Google Scholar 

  5. Behera SS, Ray RC (2016) Konjac glucomannan, a promising polysaccharide of Amorphophallus konjac K. Koch in health care. Int J Biol Macromol 92:942–956. https://doi.org/10.1016/j.ijbiomac.2016.07.098

    CAS  Article  PubMed  Google Scholar 

  6. Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781. https://doi.org/10.1042/bj20040892

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. Cho KM et al (2008) Cloning of two cellulase genes from endophytic Paenibacillus polymyxa GS01 and comparison with cel44C-man26A. J Basic Microbiol 48:464–472. https://doi.org/10.1002/jobm.200700281

    CAS  Article  PubMed  Google Scholar 

  8. Connolly ML, Lovegrove JA, Tuohy KM (2010) Konjac glucomannan hydrolysate beneficially modulates bacterial composition and activity within the faecal microbiota. J Funct Foods 2:219–224. https://doi.org/10.1016/j.jff.2010.05.001

    CAS  Article  Google Scholar 

  9. Dorival J et al (2018) The laterally acquired GH5 ZgEngA(GH5_4) from the marine bacterium Zobellia galactanivorans is dedicated to hemicellulose hydrolysis. Biochem J 475:3609–3628. https://doi.org/10.1042/Bcj20180486

    Article  PubMed  Google Scholar 

  10. Du X, Li J, Chen J, Li B (2012) Effect of degree of deacetylation on physicochemical and gelation properties of konjac glucomannan. Food Res Int 46:270–278. https://doi.org/10.1016/j.foodres.2011.12.015

    CAS  Article  Google Scholar 

  11. Fang WX, Wu PW (2004) Variations of konjac glucomannan (KGM) from Amorphophallus konjac and its refined powder in China. Food Hydrocolloids 18:167–170. https://doi.org/10.1016/s0268-005x(03)00044-4

    CAS  Article  Google Scholar 

  12. Henrissat B, Callebaut I, Fabrega S, Lehn P, Mornon JP, Davies G (1995) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci USA 92:7090–7094. https://doi.org/10.1073/pnas.92.15.7090

    CAS  Article  PubMed  Google Scholar 

  13. Hu Y et al (2019) Partial removal of acetyl groups in konjac glucomannan significantly improved the rheological properties and texture of konjac glucomannan and κ-carrageenan blends. Int J Biol Macromol 123:1165–1171

    CAS  Article  Google Scholar 

  14. Huang L, Takahashi R, Kobayashi S, Kawase T, Nishinari K (2002) Gelation behavior of native and acetylated konjac glucomannan. Biomacromol 3:1296–1303

    CAS  Article  Google Scholar 

  15. Jian W, Chen Y-H, Wang L, Tu L, Xiong H, Sun Y-M (2018) Preparation and cellular protection against oxidation of Konjac oligosaccharides obtained by combination of γ-irradiation and enzymatic hydrolysis. Food Res Int 107:93–101

    CAS  Article  Google Scholar 

  16. Jiang Z, Wei Y, Li D, Li L, Chai P, Kusakabe I (2006) High-level production, purification and characterization of a thermostable beta-mannanase from the newly isolated Bacillus subtilis WY34. Carbohyd Polym 66:88–96. https://doi.org/10.1016/j.carbpol.2006.02.030

    CAS  Article  Google Scholar 

  17. Jimenez-Colmenero F, Cofrades S, Herrero AM, Fernandez-Martin F, Rodriguez-Salas L, Ruiz-Capillas C (2012) Konjac gel fat analogue for use in meat products: comparison with pork fats. Food Hydrocolloids 26:63–72. https://doi.org/10.1016/j.foodhyd.2011.04.007

    CAS  Article  Google Scholar 

  18. Jin W, Mei T, Wang Y, Xu W, Li J, Zhou B, Li B (2014) Synergistic degradation of konjac glucomannan by alkaline and thermal method. Carbohyd Polym 99:270–277

    CAS  Article  Google Scholar 

  19. Kern M et al (2013) Structural characterization of a unique marine animal family 7 cellobiohydrolase suggests a mechanism of cellulase salt tolerance. Proc Natl Acad Sci USA 110:10189–10194. https://doi.org/10.1073/pnas.1301502110

    Article  PubMed  Google Scholar 

  20. Kim DY et al (2016) Genetic and functional characterization of an extracellular modular GH6 endo-beta-1,4-glucanase from an earthworm symbiont, Cellulosimicrobium funkei HY-13 Antonie Van Leeuwenhoek. Int J General Mol Microbiol 109:1–12. https://doi.org/10.1007/s10482-015-0604-2

    CAS  Article  Google Scholar 

  21. Li Y-l, Deng R-h, Chen N, Pan J, Pang J (2013) Review of konjac glucomannan: isolation, structure, chain conformation and bioactivities. J Single Mol Res 1:7. https://doi.org/10.12966/jsmr.07.03.2013

    Article  Google Scholar 

  22. Li K, Chen W, Wang W, Tan H, Li S, Yin H (2018) Effective degradation of curdlan powder by a novel endo-beta-1 -> 3-glucanase. Carbohyd Polym 201:122–130. https://doi.org/10.1016/j.carbpol.2018.08.048

    CAS  Article  Google Scholar 

  23. Li K et al (2020) Preparation and antitumor activity of selenium-modified glucomannan oligosaccharides. J Funct Foods 65:103731. https://doi.org/10.1016/j.jff.2019.103731

    CAS  Article  Google Scholar 

  24. Liberato MV et al (2016) Molecular characterization of a family 5 glycoside hydrolase suggests an induced-fit enzymatic mechanism. Sci Rep. https://doi.org/10.1038/srep23473

    Article  PubMed  PubMed Central  Google Scholar 

  25. Liu XY, Chen S, Yan QJ, Li YX, Jiang ZQ (2019) Effect of Konjac mannan oligosaccharides on diphenoxylate-induced constipation in mice. J Funct Foods 57:399–407. https://doi.org/10.1016/j.jff.2019.04.036

    CAS  Article  Google Scholar 

  26. Lombard V, Ramulu HG, Drula E, Coutinho PM, Henrissat B (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. https://doi.org/10.1093/nar/gkt1178

    CAS  Article  PubMed  Google Scholar 

  27. Mikkelson A, Maaheimo H, Hakala TK (2013) Hydrolysis of konjac glucomannan by Trichoderma reesei mannanase and endoglucanases Cel7B and Cel5A for the production of glucomannooligosaccharides. Carbohydr Res 372:60–68. https://doi.org/10.1016/j.carres.2013.02.012

    CAS  Article  PubMed  Google Scholar 

  28. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791. https://doi.org/10.1002/jcc.21256

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Nguyen QA, Cho EJ, Lee D-S, Bae H-J (2019) Development of an advanced integrative process to create valuable biosugars including manno-oligosaccharides and mannose from spent coffee grounds. Bioresour Technol 272:209–216

    CAS  Article  Google Scholar 

  30. Ning Y, Chuang S, Chen X, Kazuo S, Wang D, Chang Y, Tang X (2015) Expression of a glucanase gene cel9C from Clostridium josui and the activity of its recombinant enzyme. J Anhui Agric Univ 42:910–914

    CAS  Google Scholar 

  31. Nishinari K, Takahashi R (2003) Interaction in polysaccharide solutions and gels. Curr Opin Colloid Interface Sci 8:396–400

    CAS  Article  Google Scholar 

  32. Prates ET et al (2013) X-ray structure and molecular dynamics simulations of endoglucanase 3 from Trichoderma harzianum: structural organization and substrate recognition by endoglucanases that lack cellulose binding module. PLoS ONE. https://doi.org/10.1371/journal.pone.0059069

    Article  PubMed  PubMed Central  Google Scholar 

  33. Tester R, Al-Ghazzewi F (2017) Glucomannans and nutrition. Food Hydrocolloids 68:246–254

    CAS  Article  Google Scholar 

  34. Tuntrakool P, Keawsompong S (2018) Kinetic properties analysis of beta-mannanase from Klebsiella oxytoca KUB-CW2–3 expressed in Escherichia coli. Protein Expr Purif 146:23–26. https://doi.org/10.1016/j.pep.2018.01.009

    CAS  Article  PubMed  Google Scholar 

  35. Venditto I et al (2015) Family 46 carbohydrate-binding modules contribute to the enzymatic hydrolysis of xyloglucan and beta-1,3–1,4-glucans through distinct mechanisms. J Biol Chem 290:10572–10586. https://doi.org/10.1074/jbc.M115.637827

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Webb B, Sali A (2016) Comparative protein structure modeling using MODELLER. Curr Protoc Bioinf 54:5.6.1-5.6.37. https://doi.org/10.1002/cpbi.3

    Article  Google Scholar 

  37. Xia W et al (2016) A novel glycoside hydrolase family 113 endo-beta-1,4-mannanase from Alicyclobacillus sp. strain a4 and insight into the substrate recognition and catalytic mechanism of this family. Appl Environ Microb 82:2718–2727. https://doi.org/10.1128/Aem.04071-15

    CAS  Article  Google Scholar 

  38. Zeng Y, Zhang JG, Zhang Y, Men Y, Zhang B, Sun YX (2018) Prebiotic, immunomodulating, and antifatigue effects of konjac oligosaccharide. J Food Sci 83:3110–3117. https://doi.org/10.1111/1750-3841.14376

    CAS  Article  PubMed  Google Scholar 

  39. Zhang YL et al (2008) Biochemical and structural characterization of the intracellular mannanase AaManA of Alicyclobacillus acidocaldarius reveals a novel glycoside hydrolase family belonging to clan GH-A. J Biol Chem 283:31551–31558. https://doi.org/10.1074/jbc.M803409200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang M et al (2009) Purification and functional characterization of endo-beta-mannanase MAN5 and its application in oligosaccharide production from konjac flour. Appl Microbiol Biotechnol 83:865–873. https://doi.org/10.1007/s00253-009-1920-0

    CAS  Article  PubMed  Google Scholar 

  41. Zhang T, Li Z, Wang Y, Xue Y, Xue C (2016) Effects of konjac glucomannan on heat-induced changes of physicochemical and structural properties of surimi gels. Food Res Int 83:152–161

    CAS  Article  Google Scholar 

  42. Zhou Y, Cao H, Hou M, Nirasawa S, Tatsumi E, Foster TJ, Cheng Y (2013) Effect of konjac glucomannan on physical and sensory properties of noodles made from low-protein wheat flour. Food Res Int 51:879–885

    CAS  Article  Google Scholar 

  43. Zhou H et al (2019) A lytic polysaccharide monooxygenase from Myceliophthora thermophila and its synergism with cellobiohydrolases in cellulose hydrolysis. Int J Biol Macromol 139:570–576. https://doi.org/10.1016/j.ijbiomac.2019.08.004

    CAS  Article  PubMed  Google Scholar 

  44. Zhu M et al (2020) A recombinant beta-mannanase from Thermoanaerobacterium aotearoense scut27: biochemical characterization and its thermostability improvement. J Agric Food Chem 68:818–825. https://doi.org/10.1021/acs.jafc.9b06246

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/National Local Joint Engineering Laboratory of Se enriched Food Development (Se-2018A02, Se-2020C02); China Se-enriched Industry Research Institute Se-enriched Special 236 Plan Project (2019QCY-2.2); National Key R&D Program of China (2017YFD0200900) Subject 2 (2017YFD0200902). Dr. Heng Yin was supported by Liaoning Revitalization Talents Program, China (XLYC1807041).

Funding

This work was supported by Key Laboratory of Se-enriched Products Development and Quality Control, Ministry of Agriculture and Rural Affairs/National Local Joint Engineering Laboratory of Se enriched Food Development (Se-2018A02, Se-2020C02); China Se-enriched Industry Research Institute Se-enriched Special 236 Plan Project (2019QCY-2.2); National Key R&D Program of China (2017YFD0200900) Subject 2 (2017YFD0200902). Dr. Heng Yin was suppoted by Liaoning Revitalization Talents Program, China (XLYC1807041).

Author information

Affiliations

Authors

Contributions

All authors contributed to the study conception and design. HY and JL designed the outline of the article. The first draft of the manuscript was written by KL and all authors commented on previous versions of the manuscript. CJ, HT and JL searched the literature and related information. QL, XZ, DT and YX provided scientific feedback and critical comments to revise the content. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Jianguo Li or Heng Yin.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Ethics approval

This study did not include any human subjects and animal experiments.

Consent to participate

All authors declare to participate in the article.

Consent for publication

All authors declare that they agreed to publish the article.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, K., Jiang, C., Tan, H. et al. Identification and characterization of a novel glucomannanase from Paenibacillus polymyxa. 3 Biotech 11, 129 (2021). https://doi.org/10.1007/s13205-021-02676-0

Download citation

Keywords

  • Konjac glucomannan
  • Glucomannanase
  • Paenibacillus polymyxa
  • Substrate specificity
  • Konjac glucomannan oligosaccharides