Identification and function prediction of iron-deficiency-responsive microRNAs in citrus leaves

Abstract

Iron is a critical micronutrient for growth and development of plants and its deficiency limiting the crop productivity. MicroRNAs (miRNAs) play vital roles in adaptation of plants to various nutrient deficiencies. However, the role of miRNAs and their target genes related to Fe-deficiency is limited. In this study, we identified Fe-deficiency-responsive miRNAs from citrus. In Fe-deficiency conditions, about 50 and 31 miRNAs were up-regulated and down-regulated, respectively. The differently expressed miRNAs might play critical roles in contributing the Fe-deficiency tolerance in citrus plants. The miRNAs-mediated Fe-deficiency tolerance in citrus plants might related to the enhanced stress tolerance by decreased expression of miR172; regulation of S homeostasis by decreased expression of miR395; inhibition of plant growth by increased expression of miR319 and miR477; regulation of Cu homeostasis as well as activation of Cu/Zn superoxide dismutase activity due to decreased expression of miR398 and miR408 and regulation of lignin accumulation by decreased expression of miR397 and miR408. The identified miRNAs in present study laid a foundation to understand the Fe-deficiency adaptive mechanisms in citrus plants.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Data availability

The raw data of the small RNA-Seq have been uploaded to the Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.gov/sra/). The accession number is SRR5012112.

References

  1. Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in arabidopsis. J Biol Chem 283(23):15932–15945. https://doi.org/10.1074/jbc.M801406200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Agarwal S, Mangrauthia SK, Sarla N (2015) Expression profiling of iron deficiency responsive microRNAs and gene targets in rice seedlings of Madhukar x Swarna recombinant inbred lines with contrasting levels of iron in seeds. Plant Soil 396:137–150. https://doi.org/10.1007/s11104-015-2561-y

    CAS  Article  Google Scholar 

  3. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399. https://doi.org/10.1146/annurev.arplant.55.031903.141701

    CAS  Article  PubMed  Google Scholar 

  4. Buckhout TJ, Yang TJW, Schmidt W (2009) Early iron-deficiency-induced transcriptional changes in Arabidopsis roots as revealed by microarray analyses. BMC Genomics 10:147. https://doi.org/10.1186/1471-2164-10-147

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Buhtz A, Janin P, Franziska S et al (2010) Phloem small RNAs, nutrient stress responses, and systemic mobility. BMC Plant Biol 10(1):64. https://doi.org/10.1186/1471-2229-10-64

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Burkhead JL, Reynolds KA, Abdel-Ghany et al (2009) Copper homeostasis. New Phytol 182(4):799–816. https://doi.org/10.1111/j.1469-8137.2009.02846.x

    CAS  Article  PubMed  Google Scholar 

  7. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303(5665):2022–2025. https://doi.org/10.1126/science.1088060

    CAS  Article  PubMed  Google Scholar 

  8. Chen C, Ridzon DA, Broomer AJ et al (2005) Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res 33(20):e179. https://doi.org/10.1093/nar/gni178

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Cubas P, Lauter N, Coen E (1999) The TCP domain: a motif found in proteins regulating plant growth and development. Plant J 18(2):215–222. https://doi.org/10.1046/j.1365-313x.1999.00444.x

    CAS  Article  PubMed  Google Scholar 

  10. Curie C, Panaviene Z, Loulergue C et al (2001) Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature 409:346. https://doi.org/10.1038/35053080

    CAS  Article  PubMed  Google Scholar 

  11. Dong CH, Pei HX (2014) Over-expression of miR397 improves plant tolerance to cold stress in Arabidopsis thaliana. J Plant Biol 57(4):209–217. https://doi.org/10.1007/s12374-013-0490-y

    CAS  Article  Google Scholar 

  12. Hajyzadeh M, Turktas M, Khawar KM et al (2015) miR408 overexpression causes increased drought tolerance in chickpea. Gene 555(2):186–193. https://doi.org/10.1016/j.gene.2014.11.002

    CAS  Article  PubMed  Google Scholar 

  13. Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12(3):259–266. https://doi.org/10.1016/j.pbi.2009.05.006

    CAS  Article  PubMed  Google Scholar 

  14. Hsieh L-C, Lin S-I, Shih AC et al (2009) Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis by deep sequencing. Plant Physiol 151(4):2120–2132. https://doi.org/10.1104/pp.109.147280

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229(4):1009–1014. https://doi.org/10.1007/s00425-009-0889-3

    CAS  Article  PubMed  Google Scholar 

  16. Jin LF, Liu YZ, Yin XX et al (2016) Transcript analysis of citrus miRNA397 and its target LAC7 reveals a possible role in response to boron toxicity. Acta Physiol Plant 38(1):18. https://doi.org/10.1007/s11738-015-2035-0

    CAS  Article  Google Scholar 

  17. Jin LF, Liu YZ, Du W et al (2017) Physiological and transcriptional analysis reveals pathways involved in iron deficiency chlorosis in fragrant citrus. Tree Genet Genom 13(3):51. https://doi.org/10.1007/s11295-017-1136-x

    Article  Google Scholar 

  18. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799. https://doi.org/10.1016/j.molcel.2004.05.027

    CAS  Article  Google Scholar 

  19. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53. https://doi.org/10.1146/annurev.arplant.57.032905.105218

    CAS  Article  PubMed  Google Scholar 

  20. Jovanovic Z, Stanisavljevic N, Mikic A et al (2014) Water deficit down-regulates miR398 and miR408 in pea (Pisum sativum L.). Plant Physiol Biochem 83:26–31. https://doi.org/10.1016/j.plaphy.2014.07.008

    CAS  Article  PubMed  Google Scholar 

  21. Kong WW, Yang ZM (2010) Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol Biochem 48(2):153–159. https://doi.org/10.1016/j.plaphy.2009.12.008

    CAS  Article  PubMed  Google Scholar 

  22. Kou S-J, Wu X-M, Liu Z et al (2012) Selection and validation of suitable reference genes for miRNA expression normalization by quantitative RT-PCR in citrus somatic embryogenic and adult tissues. Plant Cell Rep 31(12):2151–2163. https://doi.org/10.1007/s00299-012-1325-x

    CAS  Article  PubMed  Google Scholar 

  23. Li C, Potuschak T, Gutiérrez RA et al (2005) Arabidopsis TCP20 links regulation of growth and cell division control pathways. Proc Natl Acad Sci USA 102(36):12978–12983. https://doi.org/10.1073/pnas.0504039102

    CAS  Article  PubMed  Google Scholar 

  24. Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62(6):1046–1057. https://doi.org/10.1111/j.1365-313X.2010.04216.x

    CAS  Article  PubMed  Google Scholar 

  25. Liu HH, Tian X, Li YJ et al (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14(5):836–843. https://doi.org/10.1261/rna.895308

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. López-Millán A-F, Grusak MA, Abadía A, Abadía J (2013) Iron deficiency in plants: an insight from proteomic approaches. Front Plant Sci 4:254. https://doi.org/10.3389/fpls.2013.00254

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lu S, Sun YH, Chiang VL (2008) Stress-responsive microRNAs in populus. Plant J 55(1):131–151. https://doi.org/10.1111/j.1365-313X.2008.03497.x

    CAS  Article  PubMed  Google Scholar 

  28. Ma C, Burd S, Lers A (2015) miR408 is involved in abiotic stress responses in Arabidopsis. Plant J 84(1):169–187. https://doi.org/10.1111/tpj.12999

    CAS  Article  PubMed  Google Scholar 

  29. Millar AA (2020) The function of miRNAs in plants. Plants 9(2):198. https://doi.org/10.1111/nph.14834

    CAS  Article  PubMed Central  Google Scholar 

  30. Mori S (1999) Iron acquisition by plants. Curr Opin Plant Biol 2(3):250–253. https://doi.org/10.1016/S1369-5266(99)80043-0

    CAS  Article  PubMed  Google Scholar 

  31. Moura JC, de BonineOliveira Fernandes Viana CAJ et al (2010) Abiotic and biotic stresses and changes in the lignin content and composition in plants. J Integr Plant Biol 52(4):360–376. https://doi.org/10.1111/j.1744-7909.2010.00892.x

    CAS  Article  PubMed  Google Scholar 

  32. Mutum RD, Balyan SC, Kansal S et al (2013) Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS J 280(7):1717–1730. https://doi.org/10.1111/febs.12186

    CAS  Article  PubMed  Google Scholar 

  33. Naqvi AR, Haq QMR, Mukherjee SK (2010) MicroRNA profiling of tomato leaf curl new delhi virus (tolcndv) infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease. Virology Journal 7(1):1–16. https://doi.org/10.1186/1743-422X-7-281

    CAS  Article  Google Scholar 

  34. Ori N, Cohen AR, Etzioni A (2007) Regulation of LANCEOLATE by miR319 is required for compound-leaf development in tomato. Nat Genet 39(6):787–791. https://doi.org/10.1038/ng2036

    CAS  Article  PubMed  Google Scholar 

  35. Ozhuner E, Eldem V, Ipek A et al (2013) Boron stress responsive microRNAs and their targets in barley. PLoS ONE 8(3):e59543. https://doi.org/10.1371/journal.pone.0059543

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Pant BD, Musialak-Lange M, Nuc P et al (2009) Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant Physiol 150(3):1541–1555. https://doi.org/10.1104/pp.109.139139

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Paul S, Datta SK, Datta K (2015) miRNA regulation of nutrient homeostasis in plants. Frontiers in Plant Science 6:232. https://doi.org/10.3389/fpls.2015.00232

    Article  PubMed  PubMed Central  Google Scholar 

  38. Pilon M, Ravet K, Tapken W et al (2011) The biogenesis and physiological function of chloroplast superoxide dismutases. Biochem Biophys Acta 1807(8):989–998. https://doi.org/10.1016/j.bbabio.2010.11.002

    CAS  Article  PubMed  Google Scholar 

  39. Puig S, Andres-Colas N, Garcia-Molina A et al (2007) Copper and iron homeostasis in Arabidopsis: responses to metal deficiencies, interactions and biotechnological applications. Plant, Cell Environ 30(3):271–290. https://doi.org/10.1111/j.1365-3040.2007.01642.x

    CAS  Article  Google Scholar 

  40. Qu D, Yan F, Meng R et al (2016) Identification of microRNAs and their targets associated with fruit-bagging and subsequent sunlight re-exposure in the “Granny Smith” apple exocarp using high-throughput sequencing. Front Plant Sci 7:27. https://doi.org/10.3389/fpls.2016.00027

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ravet K, Touraine B, Boucherez J et al (2009) Ferritins control interaction between iron homeostasis and oxidative stress in Arabidopsis. Plant J 57(3):400–412. https://doi.org/10.1111/j.1365-313X.2008.03698.x

    CAS  Article  PubMed  Google Scholar 

  42. Robinson NJ, Procter CM, Connolly EL et al (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397(6721):694–697. https://doi.org/10.1038/17800

    CAS  Article  PubMed  Google Scholar 

  43. Rondon AG, Jimeno S, Garcia-Rubio M et al (2003) Molecular evidence that the eukaryotic THO/TREX complex is required for efficient transcription elongation. J Biol Chem 278(40):39037–39043. https://doi.org/10.1074/jbc.M305718200

    CAS  Article  PubMed  Google Scholar 

  44. Santi S, Schmidt W (2009) Dissecting iron deficiency-induced proton extrusion in Arabidopsis roots. New Phytol 183(4):1072–1084. https://doi.org/10.1111/j.1469-8137.2009.02908.x

    CAS  Article  PubMed  Google Scholar 

  45. Schwab R, Palatnik JF, Riester M et al (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4):517–527. https://doi.org/10.1016/j.devcel.2005.01.018

    CAS  Article  PubMed  Google Scholar 

  46. Shahzad R, W. Harlina P, Ayaad M et al (2018) Dynamic roles of microRNAs in nutrient acquisition and plant adaptation under nutrient stress: a review. Plant Omics 11(1):58–79. https://doi.org/10.21475/poj.11.01.18.pne1014

    CAS  Article  Google Scholar 

  47. Song X, Li Y, Cao X et al (2019) MicroRNAs and their regulatory roles in plant-environment interactions. Annu Rev Plant Biol 70(1):489–525. https://doi.org/10.1146/annurev-arplant-050718-100334

    CAS  Article  PubMed  Google Scholar 

  48. Sterjiades R, Dean JFD, Eriksson KEL et al (1992) Laccase from sycamore maple (Acer pseudoplatanus) polymerizes monolignols. Plant Physiol 99:1162–1168. https://doi.org/10.1104/pp.99.3.1162

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019. https://doi.org/10.1105/tpc.104.022830

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051–2065. https://doi.org/10.1105/tpc.106.041673

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  51. Tagliavini M, Rombolà AD (2001) Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur J Agron 15(2):71–92. https://doi.org/10.1016/S1161-0301(01)00125-3

    CAS  Article  Google Scholar 

  52. Thiebaut F, Rojas CA, Almeida KL et al (2012) Regulation of miR319 during cold stress in sugarcane. Plant, Cell Environ 35(3):502–512. https://doi.org/10.1111/j.1365-3040.2011.02430.x

    CAS  Article  Google Scholar 

  53. Vert G, Grotz N, Dédaldéchamp F et al (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14(6):1223–1233. https://doi.org/10.1105/tpc.001388

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  54. Wang ST, Sun XL, Hoshino Y et al (2014) MicroRNA319 positively regulates cold tolerance by targeting OsPCF6 and OsTCP21 in rice (Oryza sativa L.). PLoS ONE 9(3):e91357. https://doi.org/10.1371/journal.pone.0091357

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Waters BM, McInturf SA, Stein RJ (2012) Rosette iron deficiency transcript and microRNA profiling reveals links between copper and iron homeostasis in Arabidopsis thaliana. J Exp Bot 63(16):5903–5918. https://doi.org/10.1093/jxb/ers239

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Woo H-H, Orbach MJ, Hirsch AM et al (1999) Meristem-localized inducible expression of a UDP-glycosyltransferase gene is essential for growth and development in pea and alfalfa. Plant Cell 11(12):2303–2315. https://doi.org/10.1105/tpc.11.12.2303

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Wu G, Park MY, Conway SR et al (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138(4):750–759. https://doi.org/10.1016/j.cell.2009.06.031

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Yang TJW, Lin WD, Schmidt W (2010) Transcriptional profiling of the Arabidopsis iron deficiency response reveals conserved transition metal homeostasis networks. Plant Physiol 152(4):2130–2141. https://doi.org/10.1104/pp.109.152728

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Yang CQ, Liu T, Bai FX et al (2015) miRNAome analysis associated with anatomic and transcriptomic investigations reveal the polar exhibition of corky split vein in boron deficient Citrus sinensis. Mol Genet Genom 290(5):1639–1657. https://doi.org/10.1007/s00438-015-1024-8

    CAS  Article  Google Scholar 

  60. Yelina N, Smith L, Jones A et al (2010) Putative Arabidopsis THO/TREX mRNA export complex is involved in transgene and endogenous siRNA biosynthesis. Proc Natl Acad Sci USA 107(31):13948–13953. https://doi.org/10.1073/pnas.0911341107

    Article  PubMed  Google Scholar 

  61. Zhang YC, Yu Y, Wang CY et al (2013) Overexpression of microRNA OsmiR397 improves rice yield by increasing grain size and promoting panicle branching. Nat Biotechnol 31(9):848–852. https://doi.org/10.1038/nbt.2646

    CAS  Article  PubMed  Google Scholar 

  62. Zhang X, Zhang D, Sun W et al (2019) The adaptive mechanism of plants to iron deficiency via iron uptake, transport, and homeostasis. Int J Mol Sci 20(10):2424. https://doi.org/10.3390/ijms20102424

    CAS  Article  PubMed Central  Google Scholar 

  63. Zhao M, Ding H, Zhu JK et al (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190(4):906–915. https://doi.org/10.1111/j.1469-8137.2011.03647.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the earmarked fund for China Agriculture Research System (CARS-27).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hong-Xing Cao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jin, LF., Yarra, R., Yin, XX. et al. Identification and function prediction of iron-deficiency-responsive microRNAs in citrus leaves. 3 Biotech 11, 121 (2021). https://doi.org/10.1007/s13205-021-02669-z

Download citation

Keywords

  • Citrus
  • Fe-deficiency
  • Illumina sequencing
  • miRNA