PlcA-based nanofabricated electrochemical DNA biosensor for the detection of Listeria monocytogenes in raw milk samples

Abstract

The electrochemical DNA biosensor has been developed for the detection of Listeria monocytogenes in raw milk samples. The electrochemical studies of the developed biosensor was recorded by cyclic voltammetry (CV) and electrochemical impedance (EI) using methylene blue (MB) and potassium ferricyanide K3Fe(CN)6 as redox indicators. The selectivity of the developed biosensor was demonstrated using complementary and mismatch oligonucleotide sequences. The sensitivity (S) of the developed sensor was recorded as 3461 (μA/cm2)/ng and limit of detection (LOD) was found to be 82 fg/6 µl with the regression coefficient (R2) 0.941 using CV. The sensor was characterized by field emission scanning electron microscopy (FE-SEM). The electrode was found to be stable for six months, with only 10% loss in the initial CV current.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Chemburu S, Wilkins E, Hamid AI (2005) Detection of pathogenic bacteria in food samples using highly-dispersed carbon particles. Biosens Bioelectron 21:491–499. https://doi.org/10.1016/j.bios.2004.11.025

    CAS  Article  PubMed  Google Scholar 

  2. Datta AR, Laksanalamai P, Solomotis M (2013) Recent developments in molecular subtyping of Listeria monocytogenes. Food Addit Contam A 30:1437–2144. https://doi.org/10.1080/19440049.2012.728722

    CAS  Article  Google Scholar 

  3. Fan X, Li Z, Wang S, Liu L, Liu P, Chen F, Zheng X (2019) Electrochemical Impedance biosensor for the determination of lipopolysaccharide using peptide as the recognition molecule. J Brazil Chem Soc 30:1762–1768. https://doi.org/10.21577/0103-5053.20190081

    CAS  Article  Google Scholar 

  4. Ingianni A, Floris M, Palomba P, Madeddu MA, Quartuccio M, Pompei R (2001) Rapid detection of Listeria monocytogenes in foods, by a combination of PCR and DNA probe. Mol Cell Probe 15:275–280. https://doi.org/10.1006/mcpr.2001.0372

    CAS  Article  Google Scholar 

  5. Jaakohuhta S, Harma H, Tuomola M, Lovgren T (2007) Sensitive Listeria spp. Immunoassay based on europium(III) nanoparticulate labels using time-resolved fluorescence. Int J Food Microbiol 114:288–294. https://doi.org/10.1016/j.ijfoodmicro.2006.09.025

    CAS  Article  PubMed  Google Scholar 

  6. Jadhav S, Bhave M, Palombo EA (2012) Methods used for the detection and subtyping of Listeria monocytogenes. J Microbiol Methods 88:327–341. https://doi.org/10.1016/j.mimet.2012.01.002

    CAS  Article  PubMed  Google Scholar 

  7. Jamshidi A, Zeinali T (2019) Significance and characteristics of Listeria monocytogenes in poultry products. Int J Food Sci. https://doi.org/10.1155/2019/7835253

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kaushal A, Kumar D, Khare S, Kumar A (2012) SpeB gene as a specific genetic marker for early detection of rheumatic heart disease in human. Cell Mol Biol 58:50–54

    CAS  PubMed  Google Scholar 

  9. Nagraik R, Kaushal A, Gupta S, Dhar P, Sethi S, Kumar D (2019) Optimized DNA-based bioassay for Leptospira interrogans detection: a novel platform for leptospirosis diagnosis. 3 Biotech 9:284. https://doi.org/10.1007/s13205-019-1815-4

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nasef H, Beni V, O’Sullivan CK (2010) Methylene blue as an electrochemical indicator for DF508 cystic fibrosis mutation detection. Anal Bioanal Chem 396:1423–1432. https://doi.org/10.1007/s00216-009-3369-5

    CAS  Article  PubMed  Google Scholar 

  11. Niu X, Zheng W, Yin C, Weng W, Li G, Sun W, Men Y (2017) Electrochemical DNA biosensor based on gold nanoparticles and partially reduced graphene oxide modified electrode for the detection of Listeria monocytogenes hly gene sequence. J Electroanal Chem 806:116–122. https://doi.org/10.1016/j.jelechem.2017.10.049

    CAS  Article  Google Scholar 

  12. Palumbo JD, Borucki MK, Mandrell RE, Gorski L (2003) Serotyping of Listeria monocytogenes by enzyme-linked immunosorbent assay and identification of mixed-serotype cultures by colony immunoblotting. J Clin Microbiol 41:564–571. https://doi.org/10.1128/jcm.41.2.564-571.2003

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Park JY, Park SM (2009) DNA hybridization sensors based on electrochemical impedance spectroscopy as a detection tool. Sensors 9:9513–9532. https://doi.org/10.3390/s91209513

    CAS  Article  PubMed  Google Scholar 

  14. Rahman MM, Shiddiky MJ, Rahman MA, Shim YB (2009) A lactate biosensor based on lactate dehydrogenase/nictotinamide adenine dinucleotide (oxidized form) immobilized on a conducting polymer/multiwall carbon nanotube composite film. Anal Biochem 384:159–165. https://doi.org/10.1016/j.ab.2008.09.030

    CAS  Article  PubMed  Google Scholar 

  15. Sergeev N, Distler M, Courtney S, Khaldi SF, Volokhov D, Chizhikov V (2004) Multipathogen oligonucleotide microarray for environmental and biodefense applications. Biosens Bioelectron 20:684–698. https://doi.org/10.1016/j.bios.2004.04.030

    CAS  Article  PubMed  Google Scholar 

  16. Soni DK, Ahmad R, Dubey SK (2018) Biosensor for the detection of Listeria monocytogenes: emerging trends. Crit Rev Microbiol 44:590–608. https://doi.org/10.1080/1040841x.2018.1473331

    Article  PubMed  Google Scholar 

  17. Soni DK, Singh M, Singh DV, Dubey SK (2014) Virulence and genotypic characterization of Listeria monocytogenes isolated from vegetable and soil samples. BMC Microbiol 14:241. https://doi.org/10.1186/s12866-014-0241-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Sun W, Qin P, Gao H, Li G, Jiao K (2010) Electrochemical DNA biosensor based on chitosan/nano-V2O5/MWCNTs composite film modified carbon ionic liquid electrode and its application to the LAMP product of Yersinia enterocolitica gene sequence. Biosens Bioelectron 25:1264–1270. https://doi.org/10.1016/j.bios.2009.10.011

    CAS  Article  PubMed  Google Scholar 

  19. Valimaa AL, Tilsala TA, Virtanen, (2015) Rapid detection and identification methods for Listeria monocytogenes in the food chain—a review. Food Control 55:103–114. https://doi.org/10.1016/j.foodcont.2015.02.037

    CAS  Article  Google Scholar 

  20. Vazquez BJ, Kuhn M, Berche P, Chakraborty T, Dominguez BG (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640. https://doi.org/10.1128/cmr.14.3.584-640.2001

    Article  Google Scholar 

  21. Vizzini P, Braidot M, Vidic J, Manzano M (2019) Electrochemical and optical biosensors for the detection of Campylobacter and Listeria: an update look. Micromachines 10:500. https://doi.org/10.3390/mi10080500

    Article  PubMed Central  Google Scholar 

  22. Volokhov D, Rasooly A, Chumakov K, Chizhikov V (2002) Identification of Listeria species by microarray-based assay. J Clin Microbiol 40:4720–4728. https://doi.org/10.1128/jcm.40.12.4720-4728.2002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Yan L, Zhao W, Wen Z, Li X, Niu X, Huang Y, Sun W (2017) Electrochemical DNA Sensor for hly gene of Listeria monocytogenes by three-dimensional graphene and gold nanocomposite modified electrode. Int J Electrochem 12:4086–4095. https://doi.org/10.20964/2017.05.04

    CAS  Article  Google Scholar 

  24. Zhao Y, Li Y, Jiang K, Wang J, White WL, Yang S, Lu J (2017) Rapid detection of Listeria monocytogenes in food by biofunctionalized magnetic nanoparticle-based on nuclear magnetic resonance. Food Control 71:110–116. https://doi.org/10.1016/j.foodcont.2016.06.028

    CAS  Article  Google Scholar 

  25. Zhu J, Park SW, Joh HI, Kim HC, Lee S (2013) Preparation and characterization of isotropic pitch-based carbon fiber. Carbon Letters 14:94–98. https://doi.org/10.5714/cl.2013.14.2.094

    Article  Google Scholar 

  26. Zhu J, Park SW, Joh HI, Kim HC, Lee S (2015) Study on the stabilization of isotropic pitch-based fibers. Macromol Res 23:79–85. https://doi.org/10.1007/s13233-015-3007-3

    CAS  Article  Google Scholar 

  27. Zhu L, Zhao R, Wang K, Xiang H, Shang Z, Sun W (2008) Electrochemical behaviors of methylene blue on DNA modified electrode and its application to the detection of PCR product from NOS sequence. Sensors 8:5649–5660. https://doi.org/10.3390/s8095649

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Shoolini University, Solan, Himachal Pradesh, for providing the facility to carry out the present research work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar.

Ethics declarations

Conflict of interest

There is no conflict of interest for authorship or related to any other context between authors.

Ethical standards

The authors have complied and worked within standard ethical norms.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saini, K., Kaushal, A., Gupta, S. et al. PlcA-based nanofabricated electrochemical DNA biosensor for the detection of Listeria monocytogenes in raw milk samples. 3 Biotech 10, 327 (2020). https://doi.org/10.1007/s13205-020-02315-0

Download citation

Keywords

  • DNA biosensor
  • plcA gene
  • CNF
  • AuNP
  • Foodborne pathogens
  • listeria monocytogenes
  • Selectivity